
Blockchain Automation Framework
Documentation

Release 0.4.0

Blockchain Automation Framework

Aug 15, 2021

Table of Contents:

1 Introduction 3

2 Release notes 5

3 Key Concepts 7

4 Getting Started 13

5 Operations Guide 15

6 Developer Guide 105

7 Sample Usage 209

8 BAF current roadmap 213

9 Compability Matrix 217

10 Architecture Reference 219

11 Commands Reference 249

12 Frequently Asked Questions 255

13 Glossary 261

14 Contributing 275

15 Maintainers for the Blockchain Automation Framework 277

i

ii

Blockchain Automation Framework Documentation, Release 0.4.0

The Blockchain Automation Framework is an accelerator for delivering production-ready blockchain solutions, en-
abling teams to deliver without the need to architect the solution from scratch.

What is the Blockchain Automation Framework?

The Blockchain Automation Framework is an automation framework for delivering consistent production
ready DLT networks on cloud based infrastructures.

The Blockchain Automation Framework (BAF) provides 3 key features:

• Security: BAF provides a secure environment for DLT development. BAF has best practices of key
management and other security features available by default.

• Scalability: BAF has a scalable network implementation, a user can easily scale the environment
and resources according to his/her needs.

• Acceleration: BAF will help in providing a blockchain solution that drives acceleration up to de-
ployment providing an oppourtunity to participate in those deliveries and drive more services.

It is an accelerator for all the developers to be able to use a DLT network right away. So with the
Blockchain Automation Framework, users are able to create a DLT environment and know that it is
something that will continue to be used as project management.

Table of Contents: 1

Blockchain Automation Framework Documentation, Release 0.4.0

2 Table of Contents:

CHAPTER 1

Introduction

At its core, blockchain is a new type of data system that maintains and records data in a way that allows multiple
stakeholders to confidently share access to the same data and information. A blockchain is a type of Distributed
Ledger Technology (DLT), meaning it is a data ledger that is shared by multiple entities operating on a distributed
network.

This technology operates by recording and storing every transaction across the network in a cryptographically linked
block structure that is replicated across network participants. Every time a new data block is created, it is appended to
the end of the existing chain formed by all previous transactions, thus creating a chain of blocks called the blockchain.
This blockchain format contains records of all transactions and data, starting from the inception of that data structure.

Setting up a new DLT/Blockchain network or maintaining an existing DLT/Blockchain network in a production-scale
environment is not straightforward. For the existing DLT/Blockchain platforms, each has its own architecture, which
means the same way of setting up one DLT/Blockchain network cannot be applied to others.

Therefore, when blockchain developers are asked to use an unfamiliar DLT/Blockchain platform, it requires significant
effort for even experienced technicians to properly setup the DLT/Blockchain network. This is especially true in
large-scale production projects across heterogeneous corporate environments which require other key aspects such as
security and service availability.

Being aware of the potential difficulty and complexity of getting a production-scale DLT/Blockchain network ready,
cloud vendors such as AWS and Azure have provisioned their own managed Blockchain services (aka Blockchain as
a Service or BaaS) to help alleviate various pain-points during the process. However, limitations can still be identified
in their BaaS solutions, e.g. limited network size, locked to all nodes on a single cloud provider, or limited choice of
DLT/Blockchain platform, etc.

1.1 The Blockchain Automation Framework (BAF) Platform

The objective of BAF is to provide a consistent means by which developers can deploy production-ready distributed
networks across public and private cloud providers. This enables developers to focus on building business applications
quickly, knowing that the framework upon which they are building can be adopted by an enterprise IT production
operations organization. BAF is not intended solely to quickly provision development environments which can be
done more efficiently with other projects/scripts. Likewise, Blockchain Automation Framework is not intended to

3

Blockchain Automation Framework Documentation, Release 0.4.0

replace BaaS offerings in the market, but instead, BAF is an alternative when existing BaaS offerings do not support a
consortium’s current set of requirements.

1.2 How is it different from other BaaS?

• The Blockchain Automation Framework deployment scripts can be reused across cloud providers like AWS,
Azure, GCP, DigitalOcean and OpenShift

• Can deploy networks and smart contracts across different DLT/Blockchain platforms

• Supports heterogeneous deployments in a multi-cloud, multi-owner model where each node is completely owned
and managed by separate organizations

• Bring Your Own Infrastructure (BYOI) - You provide GIT, Kubernetes cluster(s), and Hashicorp Vault services
provisioned to meet your specific requirements and enterprise standards

• No network size limit

• Specifies only the number of organizations and the number of nodes per organization in a network.yaml file
uniquely designed in the Blockchain Automation Framework for a new DLT/Blockchain network set-up and its
future maintenance

• Provides a sample supply chain application which runs on multiple DLT/Blockchain platforms that can be used
as a reference pattern for how to safely abstract application logic from the underlying DLT/Blockchain platform

1.2.1 What next?

We have been actively searching for partners who need and understand the value of Blockchain Automation Frame-
work, who share the vision of building and owning well architected solutions. We wish to work together so as to
identify the market needs for those partners, to further reduce the barriers in adoption.

4 Chapter 1. Introduction

CHAPTER 2

Release notes

Release notes have been moved to GitHub here.

5

https://github.com/hyperledger-labs/blockchain-automation-framework/releases

Blockchain Automation Framework Documentation, Release 0.4.0

6 Chapter 2. Release notes

CHAPTER 3

Key Concepts

This section introduces the key concepts along with their features used within the Blockchain Automation Framework.
This section works as step one that will pave the way for new users to understand the key conceptual building blocks
used in the Blockchain Automation Framework’s architecture design.

3.1 Ansible

Ansible is an automation command line tool that helps IT technicians easily achieve system configuration, software
deployment and other complex tasks in orchestration.

Ansible provisions several types of command line tools such as ansible, ansible-playbook and ansible-galaxy, etc.
Each serves different scenarios so that a user can choose the most appropriate one or more to be adopted in the chosen
scenario(s).

Below gives a simple description of the three mentioned above, and a user can use the link to find more information
for each of them.

• ansible: it is the simplistic command line tool that enables a user to quickly achieve simple IT tasks, e.g. list
one or more local/remote machines’ information.

• ansible-playbook: it is an advanced command line that will run one or more Ansible playbooks (i.e. YAML
files that have all the steps configured to achieve one or more complex tasks). Ansible roles are defined to group
relavant configurations together that can be resuable in multi playbooks.

• ansible-galaxy: it is an advanced command line that can run existing Ansible roles predefined by other users in
the Ansible community.

The Blockchain Automation Framework extensively uses Ansible playbooks along with roles to spin up a
DLT/Blockchain network. For instance, to issue certificates for each node in the DLT/Blockchain network, and
then put the certificates to HashiCorp Vaults. In the Blockchain Automation Framework, there are different Ansi-
ble playbooks being designed, and the key player that makes the whole DLT/Blockchain network set-up to happen
automatically is the roles defined in the playbooks following a specific order.

7

https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/user_guide/intro_getting_started.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html

Blockchain Automation Framework Documentation, Release 0.4.0

3.2 Kubernetes Services

3.2.1 Container

A Docker Container is an ephermeral running process that has all the necessary package dependencies within it. It
differentiates from a Docker Image that is a multi-layered file. A container is much more light-weighted, standalone
and resuable compared to a Virtual Machine (VM).

3.2.2 Cluster

A cluster of containers is grouped by one or more running containers serving different purposes with their duplicates
that can ensure high availability of services. One example of a cluster is Docker Swarm.

3.2.3 Kubernetes

Kubernetes (K8s) is an open-source system for automating deployment, scaling and maintaining containerized appli-
cations. Kubernetes provisions more advanced configurations and features to set up a cluster compared to Docker
Swarm, which make it a very strong candidate in any production-scale environment.

3.2.4 Managed Kubernetes Services

The open-source K8s services requires technicians to set up an underlying infrastructure and all initial K8s clusters,
but the setting-up process is normally time-consuming and error-prone. This is why K8s is well known for its deep
learning curves. To alleviate this complex process for users, many Cloud service providers such as AWS, Azure, GCP
and DO, have provisioned their own Managed K8s Services.

The Blockchain Automation Framework leverages Kubernetes’ various features for deploying a DLT/Blockchain net-
work along with other required services in one or more K8s clusters. All the current functions have been tested on
Amazon K8s Services (AKS) as a managed K8s service, but in theory they should work on a non-managed K8s service
as well.

3.2.5 Ambassador

Ambassador is an open-source microservices API gateway designed for K8s.

The Blockchain Automation Framework uses Ambassador to route traffic amongst multiple K8s clusters. For each K8s
cluster, an Ambassador Loadbalancer Service will be created to sit inside it. A user has to manually use a DNS server
(e.g. AWS Route53) to map the public IP of the Ambassador Service to a DNS name for each cluster. Optionally,
you can configure External-DNS on the cluster and map the routes automatically. Automatic updation of routes via
External DNS is supported from BAF 0.3.0.0 onwards.

A simplistic view of how Ambassador works is as follows:

If a pod in Cluster1 wants to reach a target pod in Cluster2, it will just use the Domain address or IP in Cluster2 and
then Cluster2 Ambassador will route the traffic to the target pod in Cluster2.

NOTE: If only one cluster is used in a DLT/Blockchain network, Ambassador may not be needed, but it will still be
installed (if chosen).

8 Chapter 3. Key Concepts

https://www.docker.com/resources/what-container
https://docs.docker.com/v17.09/engine/userguide/storagedriver/imagesandcontainers/#images-and-layers
https://docs.docker.com/engine/swarm/
https://kubernetes.io
https://aws.amazon.com/eks/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://cloud.google.com/kubernetes-engine/
https://cloud.digitalocean.com/kubernetes/
https://www.getambassador.io/about/why-ambassador/
https://github.com/kubernetes-sigs/external-dns

Blockchain Automation Framework Documentation, Release 0.4.0

3.2.6 HAProxy Ingress

HAProxy Ingress is another way of routing traffic from outside your cluster to services within the cluster. This is
implemented in BAF Fabric from Release 0.3.0.0 onwards as we were unable to configure Ambassador to do ssl-
passthrough for GRPC.

In BAF, HAProxy Ingress does the same thing as Ambassador does i.e. it routes traffic amongst multiple K8s clusters.
For each K8s cluster, an HAProxy Ingress Loadbalancer Service will be created to sit inside it. A user has to manually
use a DNS server (e.g. AWS Route53) to map the public IP of the HAProxy Service to a DNS name for each cluster.
Optionally, you can configure External-DNS on the cluster and map the routes automatically. Automatic updation of
routes via External DNS is supported from BAF 0.3.0.0 onwards.

NOTE: If only one cluster is used in a DLT/Blockchain network, HAProxy may not be needed, but it will still be
installed (if chosen).

3.3 Helm

Essentially, Helm is a package manager for K8s. Helm Charts are configuration files designed for K8s to help define,
install and upgrade complex K8s applications.

Helm brings below features:

1. Predictable deployments.

2. Maintains “Bill of Materials” of all the pods that work together to deliver the application.

3. Keeps (forces) a team to stay synchronised.

4. Strong version control.

5. Easier testing and QA.

6. Rollbacks on an application level, not just a one-off pod level.

The Blockchain Automation Framework uses Helm Charts for designing and configuring the architecture of each
DLT/Blockchain platform for its own network set-up.

3.4 HashiCorp Vault

HashiCorp Vault provisions a secure approach to store and gain secret information such as tokens, passwords and
certificates.

The Blockchain Automation Framework relies on Vaults for managing certificates used in each node of a
DLT/Blockchain network during the lifecycle of a deployment, and it is a prerequisite that the Vault is installed and
unsealed prior to deployment of a DLT/Blockchain network.

3.4.1 Installation

There are two approaches to installing Vault:

• Using a precompiled binary

• Installing from source

Downloading a precompiled binary is easiest and provides downloads over TLS along with SHA256 sums to verify
the binary. Hashicorp also distributes a PGP signature with the SHA256 sums that should be verified.

3.3. Helm 9

https://www.haproxy.com/documentation/hapee/1-9r1/traffic-management/kubernetes-ingress-controller/
https://github.com/kubernetes-sigs/external-dns
https://helm.sh/
https://www.vaultproject.io/
https://www.vaultproject.io/docs/install/#precompiled-binaries
https://www.vaultproject.io/docs/install/#compiling-from-source

Blockchain Automation Framework Documentation, Release 0.4.0

3.4.2 Securing RPC Communication with TLS Encryption

Securing your cluster with TLS encryption is an important step for production deployments. The recomended tool
for vault certificate management is Consul. Hashicorp Consul is a networking tool that provides a fully featured
service-mesh control plane, service discovery, configuration, and segmentation.

Consul supports using TLS to verify the authenticity of servers and clients. To enable TLS, Consul requires that all
servers have certificates that are signed by a single Certificate Authority (CA). Clients should also have certificates
that are authenticated with the same CA.

After generating the necessary client and server certificates, the values.yaml file tls field can be populated with the
ca.cert certificates. Populating this field will enable or disable TLS for vault communication if a value present.

The latest documentation on generating tls material with consul can be found at:
[(https://learn.hashicorp.com/consul/security-networking/certificates])

3.5 GitOps

GitOps introduces an approach that can make K8s cluster management easier and also guarantee the latest application
delivery is on time.

The Blockchain Automation Framework uses Weavework’s Flux for the implementation of GitOps and executes an
Ansible role called setup/flux defined in its GitHub repo that will:

• Scan for existing SSH Hosts

• Authorize client machine as per kube.yaml

• Add weavework flux repository in helm local repository

• Install flux

3.6 The Blockchain Automation Framework’s Features

3.6.1 Multi-Cloud service providers support

The Blockchain Automation Framework’s scripts do not stick to any one of the Cloud service provider. On the contrary,
they can be used on any Cloud platform as long as all the prerequisites are met.

3.6.2 Multi-DLT/Blockchain platforms support

The Blockchain Automation Framework supports an environment of multi-clusters for the spin-up of a
DLT/Blockchain network (e.g. Hyperledger Fabric or R3 Corda). Regardless of unique components (e.g. channels
and orderers in Fabric, and Doorman, Notary in Corda) designed in each platform which make the DLT/Blockchain
ecosystems become heterogeneous, the Blockchain Automation Framework does remove this complexity and chal-
lenge by leveraing a uniquely-designed network.yaml file, which enables the set-up of a DLT/Blockchain network on
either platform to be consistent.

3.6.3 No dependency on managed K8s services

Setting up a DLT network does not depend on a managed K8s services, which means non-managed K8s clusters can
be used to make a DLT network set-up happen.

10 Chapter 3. Key Concepts

https://www.weave.works/technologies/gitops/
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/roles

Blockchain Automation Framework Documentation, Release 0.4.0

3.6.4 One touch/command deployment

A single Ansible playbook called site.yaml can spin up an entire DLT network and a substantial amount of time can be
reduced which is involved in configuring and managing the network components of a Corda or Fabric DLT network.

3.6.5 Security through Vault

HashiCorp Vault is used to provide identity-based security. When it comes to managing secrets with machines in a
multi-cloud environment, the dynamic nature of HashiCorp Vault becomes very useful. Vault enables the Blockchain
Automation Framework to securely store and tightly control access to tokens, passwords, certificates, and encryption
keys for protecting machines, applications, and sensitive data.

3.6.6 Sharing a Network.yaml file without disclosing any confidentiality

The Blockchain Automation Framework allows an organization to use a configured network.yaml file to set up an ini-
tial DLT/Blockchain network and a first node in the network, and allows this file to be shared by new organizations that
will have to join this DLT/Blockchain network to reuse this network.yaml file, but without revealing any confidential
data of the first organization.

3.6. The Blockchain Automation Framework’s Features 11

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration

Blockchain Automation Framework Documentation, Release 0.4.0

12 Chapter 3. Key Concepts

CHAPTER 4

Getting Started

Before we begin, if you haven’t already done so, you may wish to check that you have all the prerequisites installed on
the platform(s) on which you’ll be deploying blockchain networks from and/or operating the Blockchain Automation
Framework.

Once you have the prerequisites installed, you are ready to fork this repository and start using the Blockchain Automa-
tion Framework.

4.1 Configure Prerequisites

After installation of the prerequisites, some of them will need to be configured as per the Blockchain Automation
Framework. Follow these instructions to configure the pre-requistes and setting up of your environment.

4.2 Update Configuration File

Once all the prerequisites have been configured, it is time to update the Blockchain Automation Framework configura-
tion file. Depending on your platform of choice, there can be some differences in the configuration file. Please follow
platform specific links below to learn more on updating the configuration file.

• R3 Corda Configuration File

• Hyperledger Fabric Configuration File

• Hyperledger Indy Configuration File

• Quorum Configuration File

• Hyperledger Besu Configuration File

13

Blockchain Automation Framework Documentation, Release 0.4.0

4.3 Deploy the Network

After the configuration file is updated and saved on the Ansible Controller, run the provisioning script to deploy the
network using the following command.

go to blockchain-automation-framework
cd blockchain-automation-framework
Run the provisioning scripts
ansible-playbook platforms/shared/configuration/site.yaml -e "@/path/to/network.yaml"

For more detailed instructions to set up a network, read Setting up a DLT/Blockchain network.

14 Chapter 4. Getting Started

CHAPTER 5

Operations Guide

This section defines the pre-requisites installation and steps for setup of a DLT network. If this is your first time, do
refer to Key-Concepts, Getting-Started and Architecture-References before moving ahead.

5.1 Pre-requisites

5.1.1 Install Pre-requisites

Before we begin, if you haven’t already done so, you may wish to check that you have all the prerequisites below
installed on the platform(s) on which you’ll be deploying blockchain networks from and/or operating the Blockchain
Automation Framework.

Git Repository

As you may have read in the key concepts, the Blockchain Automation Framework (BAF) uses GitOps method for
deployment to Kubernetes clusters, so a Git repository is needed for BAF (this can be a GitHub repository as well).
Fork or import the BAF GitHub repo to this Git repository.

The Operator should have a user created on this repo with full access to the Git Repository.

NOTE: Install Git Client Version > 2.31.0

Kubernetes

The Blockchain Automation Framework (BAF) deploys the DLT/Blockchain network on Kubernetes clusters; so to use
BAF, at least one Kubernetes cluster should be available. BAF recommends one Kubernetes cluster per organization
for production-ready projects. Also, a user needs to make sure that the Kubernetes clusters can support the number of
pods and persistent volumes that will be created by BAF.

15

https://github.com/
https://github.com/hyperledger-labs/blockchain-automation-framework
https://kubernetes.io/

Blockchain Automation Framework Documentation, Release 0.4.0

NOTE: For the current release BAF has been tested on Amazon EKS with Kubernetes version 1.16.

Also, install kubectl Client version v1.16.13

Please follow Amazon instructions to set-up your required Kubernetes cluster(s). To connect to Kubernetes cluster(s),
you will also need kubectl Command Line Interface (CLI). Please refer here for installation instructions, although the
Blockchain Automation Framework configuration code (Ansible scripts) installs this automatically.

HashiCorp Vault

In this current release, Hashicorp Vault is mandatory for the Blockchain Automation Framework (BAF) as the certifi-
cate and key storage solution; so to use BAF, at least one Vault server should be available. BAF recommends one Vault
per organization for production-ready projects.

Follow official instructions to deploy Vault in your environment.

NOTE: Recommended approach is to create one Vault deployment on one VM and configure the backend as a cloud
storage.

Vault version should be 1.7.1

Ansible

The Blockchain Automation Framework configuration is essentially Ansible scripts, so install Ansible on the machine
from which you will deploy the DLT/Blockchain network. This can be a local machine as long as Ansible commands
can run on it.

Please note that this machine (also called Ansible Controller) should have connectivity to the Kubernetes cluster(s)
and the Hashicorp Vault service(s). And it is essential to install the git client on the Ansible Controller.

NOTE: Minimum Ansible version should be 2.10.5 with Python3

Also, Ansible’s k8s module requires the openshift python package (>= 0.6).

NOTE (MacOS): Ansible requires GNU tar. Install it on MacOS through Homebrew brew install gnu-tar

Configuring Ansible Inventory file

In the Blockchain Automation Framework, we connect to Kubernetes cluster through the Ansible Controller and do
not modify or connect to any other machine directly. The Blockchain Automation Framework’s sample inventory file
is located here.

Add the contents of this file in your Ansible host configuration file (typically in file /etc/ansible/hosts).

Read more about Ansible inventory here.

16 Chapter 5. Operations Guide

https://aws.amazon.com/eks/getting-started/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://www.vaultproject.io/
https://www.vaultproject.io/docs/install/
https://git-scm.com/download
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/inventory/ansible_provisioners
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

Blockchain Automation Framework Documentation, Release 0.4.0

Docker

The Blockchain Automation Framework provides pre-built docker images which are available on Docker Hub. If
specific changes are needed in the Docker images, then you can build them locally using the Dockerfiles provided.
A user needs to install Docker CLI to make sure the environment has the capability of building these Dockerfiles to
generate various docker images. Platform specific docker image details are mentioned here.

NOTE: The Blockchain Automation Framework uses minimum Docker version 18.03.0

You can check the version of Docker you have installed with the following command from a terminal prompt:

docker --version

For storing private docker images, a private docker registry can be used. Information such as registry url, username,
password, etc. can be configured in the configuration file like Fabric configuration file.

Docker Build for dev environments

The Blockchain Automation Framework is targetted for Production systems, but, in case, a developer environment
is needed, you can create a containerized Ansible machine to deploy the dev DLT/Blockchain network using docker
build.

The details on how to create a containerized Ansible machine is mentioned here.

NOTE: This containerized machine (also called Ansible Controller) should have connectivity to the Kubernetes
cluster(s) and the Hashicorp Vault service(s).

Internet Domain

As you may have read in the Kubernetes key concepts, the Blockchain Automation Framework uses Ambassador or
HAProxy Ingress Controller for inter-cluster communication. So, for the Kubernetes services to be available outside
the specific cluster, at least one DNS Domain is required. This domain name can then be sub-divided across multiple
clusters and the domain-resolution configured for each. Although for production implementations, each organization
(and thereby each cluster), must have one domain name.

NOTE: If single cluster is being used for all organizations in a dev/POC environment, then domain name is not needed.

5.1.2 Configure Pre-requisites

• Ansible Inventory file

• Private Key for GitOps

• Docker Images

• Vault Initialization and unseal

• Ambassador

• External DNS

• HAProxy Ingress

5.1. Pre-requisites 17

https://hub.docker.com/u/hyperledgerlabs
https://docs.docker.com/install/
https://www.getambassador.io/about/why-ambassador/
https://www.haproxy.com/documentation/hapee/1-9r1/traffic-management/kubernetes-ingress-controller/

Blockchain Automation Framework Documentation, Release 0.4.0

Ansible Inventory file

If not done already, configure the Ansible controller with this sample inventory file is located here.

Add the contents of this file in your Ansible host configuration file (typically in file /etc/ansible/hosts).

Read more about Ansible inventory here.

Private Key for GitOps

For synchronizing the Git repo with the cluster, the Blockchain Automation Framework configures Flux for each
cluster. The authentication is via SSH key, so this key should be generated before you run the playbooks. Run the
following command to generate a private-public key pair named gitops.

ssh-keygen -q -N "" -f ./gitops

The above command generates an SSH key-pair: gitops (private key) and gitops.pub (public key).

Use the path to the private key (gitops) in the gitops.private_key section of the configuration file.

NOTE: Ensure that the Ansible host has read-access to the private key file (gitops).

And add the public key contents (starts with ssh-rsa) as an Access Key (with read-write permissions) in your Github
repository by following this guide.

Docker Images

The Blockchain Automation Framework provides pre-built docker images which are available on Docker Hub. Ensure
that the versions/tags you need are available. If not, raise it on our RocketChat Channel.

For Corda Enterprise, the docker images should be built and put in a private docker registry. Please follow these
instructions to build docker images for Corda Enterprise.

NOTE: The Blockchain Automation Framework recommends use of private docker registry for production use. The
username/password for the docker registry can be provided in a network.yaml file so that the Kubernetes cluster can
access the registry.

Unseal Hashicorp Vault

Hashicorp Vault is one of the pre-requisites for the Blockchain Automation Framework. The Vault service should be
accessible by the ansible host as well as the kubernetes cluster (proper inbound/outbound rules should be configured).
If not initialised and unsealed already, complete the following steps to unseal and access the Vault.

• Install Vault client. Follow the instructions on Install Vault.

• Set the environment Variable VAULT_ADDR to the Vault service. Note that this service should be accessible
from the host where you are running this command from, as well as the Ansible controller and the Kubernetes
nodes.

18 Chapter 5. Operations Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/inventory/ansible_provisioners
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://help.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account
https://hub.docker.com/u/hyperledgerlabs
https://chat.hyperledger.org/channel/blockchain-automation-framework
../architectureref/corda-ent.html#docker-images
../architectureref/corda-ent.html#docker-images
https://www.vaultproject.io/
https://www.vaultproject.io/docs/install/

Blockchain Automation Framework Documentation, Release 0.4.0

export VAULT_ADDR=http://my-vault-server:9000

• Now execute the following:

vault operator init -key-shares=1 -key-threshold=1

It will give following output:

Unseal Key 1: << unseal key>>

Initial Root Token: << root token>>

Save the root token and unseal key in a secure location. This root token is to be updated in the Blockchain Automation
Framework’s network.yaml file before running the Ansible playbook(s) to deploy the DLT/Blockchain network.

• Unseal with the following command:

vault operator unseal << unseal-key-from-above >>

• Run this command to login and check if Vault is unsealed:

vault login << give the root token >>

• Enable v1 secrets engine. Blockchain Automation Framework uses the secret path secret by default. This
can be changed in the network.yaml, in which case it will need to be enabled with the selected path.

vault secrets enable -version=1 -path=secret kv

You may generate multiple root tokens at the time of initialising the Vault, and delete the one used in the network.yaml
file as that is visible in ansible logs.

NOTE: It is recommended to use Vault auto-unseal using Cloud KMS for Production Systems. And use root token
rotation.

Ambassador

The Blockchain Automation Framework (BAF) uses Ambassador for inter-cluster communication. To enable BAF
Kubernetes services from one Kubernetes cluster to talk to services in another cluster, Ambassador needs to be con-
figured as per the following steps:

• After Ambassador is deployed on the cluster (manually or using platforms/shared/configuration/
kubernetes-env-setup.yaml playbook), get the external IP address of the Ambassador service.

kubectl get services -o wide

The output of the above command will look like this: Ambassador
Service Output

• Copy the EXTERNAL-IP for ambassador service from the output.

5.1. Pre-requisites 19

https://www.getambassador.io/about/why-ambassador/

Blockchain Automation Framework Documentation, Release 0.4.0

NOTE: If Ambassador is configured by the playbook, then this configuration has to be done while the playbook is
being executed, otherwise the deployment will fail.

• Configure your subdomain configuration to redirect the external DNS name to this external IP. For ex-
ample, if you want to configure the external domain suffix as test.corda.blockchaincloudpoc.com,
then update the DNS mapping to redirect all requests to *.test.corda.blockchaincloudpoc.com towards
EXTERNAL-IP from above as an ALIAS. In AWS Route53, the settings look like below (in Hosted Zones).

Ambassador
DNS Configuration

NOTE: Ambassador for AWS and AWS-baremetal expose Hyperledger Indy nodes via a TCP Network Load Balancer
with a fixed IP address. The fixed IP address is used as EIP allocation ID for all steward public IPs found in the
network.yaml. The same public IP is specified for all stewards within one organization. All ports used by Indy nodes
in the particular organization have to be exposed.

External DNS

In case you do not want to manually update the route configurations every time you change DNS name, you can
use External DNS for automatic updation of DNS routes. Follow the steps as per your cloud provider, and then use
external_dns: enabled in the env section of the BAF configuration file (network.yaml).

NOTE: Detailed configuration for External DNS setup is not provided here, please refer the link above.

HAProxy Ingress

From Release 0.3.0.0 onwards, Blockchain Automation Framework (BAF) uses HAProxy Ingress Controller for inter-
cluster communication for Fabric network. To enable Fabric GRPC services from one Kubernetes cluster to talk to
GRPC services in another cluster, HAProxy needs to be configured as per the following steps:

• Use proxy: haproxy in the env section of the BAF configuration file (network.yaml).

• Execute platforms/shared/configuration/kubernetes-env-setup.yaml playbook using
the BAF configuration file, and then get the external IP address of the HAProxy controller service.

kubectl get services --all-namespaces -o wide

• Copy the EXTERNAL-IP for haproxy-ingress service in namespace ingress-controller from the output.

20 Chapter 5. Operations Guide

https://github.com/kubernetes-sigs/external-dns
https://www.haproxy.com/documentation/hapee/1-9r1/traffic-management/kubernetes-ingress-controller/

Blockchain Automation Framework Documentation, Release 0.4.0

• Configure your subdomain configuration to redirect the external DNS name to this external IP. For example,
if you want to configure the external domain suffix as test.corda.blockchaincloudpoc.com, then update the
DNS mapping to redirect all requests to *.test.corda.blockchaincloudpoc.com towards EXTERNAL-IP from
above as an ALIAS.

• Or, you can use External DNS above to configure the routes automatically.

5.2 Fabric operations

5.2.1 Configuration file specification: Hyperledger-Fabric

A network.yaml file is the base configuration file designed in the Blockchain Automa-
tion Framework for setting up a Fabric DLT network. This file contains all the infor-
mation related to the infrastructure and network specifications. Below shows its structure.

5.2. Fabric operations 21

Blockchain Automation Framework Documentation, Release 0.4.0

Before setting up a Fabric DLT/Blockchain network, this file needs to be updated with the required specifications.

A sample configuration file is provided in the repo path:platforms/hyperledger-fabric/
configuration/samples/network-fabricv2.yaml

A json-schema definition is provided in platforms/network-schema.json to assist with semantic validations
and lints. You can use your favorite yaml lint plugin compatible with json-schema specification, like redhat.
vscode-yaml for VSCode. You need to adjust the directive in template located in the first line based on your actual
build directory:

yaml-language-server: $schema=../platforms/network-schema.json

The configurations are grouped in the following sections for better understanding.

• type

22 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

• version

• docker

• frontend

• env

• orderers

• channels

• organizations

Here is the snapshot from the sample configuration file

The sections in the sample configuration file are:

type defines the platform choice like corda/fabric, here in the example its Fabric

version defines the version of platform being used. The current Fabric version support is 1.4.8, 2.2.0 & 2.2.2

frontend is a flag which defines if frontend is enabled for nodes or not. Its value can only be enabled/disabled. This
is only applicable if the sample Supplychain App is being installed.

env section contains the environment type and additional (other than 8443) Ambassador port configuration. Vaule for
proxy field under this section can be ‘ambassador’ or ‘haproxy’

The snapshot of the env section with example value is below

env:
type: "env_type" # tag for the environment. Important to run

→˓multiple flux on single cluster
proxy: haproxy # values can be 'haproxy' or 'none' (for minikube)
ambassadorPorts: # Any additional Ambassador ports can be given

→˓here, this is valid only if proxy='ambassador'
portRange: # For a range of ports

(continues on next page)

5.2. Fabric operations 23

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

from: 15010
to: 15043

ports: 15020,15021 # For specific ports
loadBalancerSourceRanges: # (Optional) Default value is '0.0.0.0/0', this value

→˓can be changed to any other IP adres or list (comma-separated without spaces) of IP
→˓adresses, this is valid only if proxy='ambassador'

retry_count: 100 # Retry count for the checks
external_dns: enabled # Should be enabled if using external-dns for

→˓automatic route configuration

The fields under env section are

docker section contains the credentials of the repository where all the required images are built and stored.

The snapshot of the docker section with example values is below

Docker registry details where images are stored. This will be used to create k8s
→˓secrets
Please ensure all required images are built and stored in this registry.
Do not check-in docker_password.
docker:
url: "docker_url"
username: "docker_username"
password: "docker_password"

The fields under docker section are

NOTE: Please follow these instructions to build and store the docker images before running the Ansible playbooks.

orderers section contains a list of orderers with variables which will expose it for the network.

The snapshot of the orderers section with example values is below

Remote connection information for orderer (will be blank or removed for orderer
→˓hosting organization)
orderers:
- orderer:

type: orderer
name: orderer1
org_name: supplychain #org_name should match one organization

→˓definition below in organizations: key
uri: orderer1.org1ambassador.blockchaincloudpoc.com:8443 # Can be external or

→˓internal URI for orderer which should be reachable by all peers
certificate: /home/blockchain-automation-framework/build/orderer1.crt

→˓# Ensure that the directory exists
- orderer:

type: orderer
name: orderer2
org_name: supplychain #org_name should match one organization

→˓definition below in organizations: key
uri: orderer2.org1ambassador.blockchaincloudpoc.com:8443 # Can be external or

→˓internal URI for orderer which should be reachable by all peers
certificate: /home/blockchain-automation-framework/build/orderer2.crt

→˓# Ensure that the directory exists

24 Chapter 5. Operations Guide

../operations/configure_prerequisites.html#docker

Blockchain Automation Framework Documentation, Release 0.4.0

The fields under the each orderer are

The channels sections contains the list of channels mentioning the participating peers of the organizations.

The snapshot of channels section with its fields and sample values is below

The channels defined for a network with participating peers in each channel
channels:
- channel:
consortium: SupplyChainConsortium
channel_name: AllChannel
orderer:
name: supplychain

participants:
- organization:

name: carrier
type: creator # creator organization will create the channel and

→˓instantiate chaincode, in addition to joining the channel and install chaincode
org_status: new
peers:
- peer:

name: peer0
gossipAddress: peer0.carrier-net.org3ambassador.blockchaincloudpoc.com:8443

→˓# External or internal URI of the gossip peer
peerAddress: peer0.carrier-net.org3ambassador.blockchaincloudpoc.com:8443 #

→˓External URI of the peer
ordererAddress: orderer1.org1ambassador.blockchaincloudpoc.com:8443

→˓# External or internal URI of the orderer
- organization:

name: store
type: joiner # joiner organization will only join the channel and

→˓install chaincode
org_status: new
peers:
- peer:

name: peer0
gossipAddress: peer0.store-net.org3ambassador.blockchaincloudpoc.com:8443
peerAddress: peer0.store-net.org3ambassador.blockchaincloudpoc.com:8443 #

→˓External URI of the peer
ordererAddress: orderer1.org1ambassador.blockchaincloudpoc.com:8443

- organization:
name: warehouse
type: joiner
org_status: new
peers:
- peer:

name: peer0
gossipAddress: peer0.warehouse-net.org2ambassador.blockchaincloudpoc.com:8443
peerAddress: peer0.warehouse-net.org3ambassador.blockchaincloudpoc.com:8443 #

→˓External URI of the peer
ordererAddress: orderer1.org1ambassador.blockchaincloudpoc.com:8443

- organization:
name: manufacturer
type: joiner
org_status: new
peers:
- peer:

name: peer0
gossipAddress: peer0.manufacturer-net.org2ambassador.blockchaincloudpoc.

→˓com:8443 (continues on next page)

5.2. Fabric operations 25

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

peerAddress: peer0.manufacturer-net.org3ambassador.blockchaincloudpoc.
→˓com:8443 # External URI of the peer

ordererAddress: orderer1.org1ambassador.blockchaincloudpoc.com:8443
endorsers:

name:
- carrier
- warehouse
- manufacturer
- store
corepeerAddress:
- peer0.carrier-net.hf.demo.aws.blockchaincloudpoc.com:8443
- peer0.warehouse-net.hf.demo.aws.blockchaincloudpoc.com:8443
- peer0.manufacturer-net.hf.demo.aws.blockchaincloudpoc.com:8443
- peer0.store-net.hf.demo.aws.blockchaincloudpoc.com:8443

genesis:
name: OrdererGenesis

The fields under the channel are

Each organization field under participants field of the channel contains the following fields

The organizations section contains the specifications of each organization.

In the sample configuration example, we have five organization under the organizations section

The snapshot of an organization field with sample values is below

organizations:
Specification for the 1st organization. Each organization maps to a VPC and a

→˓separate k8s cluster
- organization:

name: supplychain
country: UK
state: London
location: London
subject: "O=Orderer,L=51.50/-0.13/London,C=GB"
type: orderer
external_url_suffix: org1ambassador.blockchaincloudpoc.com
org_status: new
ca_data:
url: ca.supplychain-net:7054
certificate: file/server.crt # This has not been implemented

cloud_provider: aws # Options: aws, azure, gcp, digitalocean, minikube

Each organization under the organizations section has the following fields.

For the aws and k8s field the snapshot with sample values is below

aws:
access_key: "<aws_access_key>" # AWS Access key, only used when cloud_

→˓provider=aws
secret_key: "<aws_secret>" # AWS Secret key, only used when cloud_

→˓provider=aws

Kubernetes cluster deployment variables.
k8s:

region: "<k8s_region>"
context: "<cluster_context>"
config_file: "<path_to_k8s_config_file>"

26 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

The aws field under each organization contains: (This will be ignored if cloud_provider is not ‘aws’)

The k8s field under each organization contains

For gitops fields the snapshot from the sample configuration file with the example values is below

Git Repo details which will be used by GitOps/Flux.
gitops:

git_protocol: "https" # Option for git over https or ssh
git_url: "https://github.com/<username>/blockchain-automation-framework.git"

→˓# Gitops htpps or ssh url for flux value files
branch: "<branch_name>" #

→˓Git branch where release is being made
release_dir: "platforms/hyperledger-fabric/releases/dev" # Relative Path in

→˓the Git repo for flux sync per environment.
chart_source: "platforms/hyperledger-fabric/charts" # Relative Path

→˓where the Helm charts are stored in Git repo
git_repo: "github.com/<username>/blockchain-automation-framework.git" #

→˓without https://
username: "<username>" # Git Service user who has rights to check-in

→˓in all branches
password: "<password>" # Git Server user password/personal token

→˓(Optional for ssh; Required for https)
email: "<git_email>" # Email to use in git config
private_key: "<path to gitops private key>" # Path to private key (Optional

→˓for https; Required for ssh)

The gitops field under each organization contains

The services field for each organization under organizations section of Fabric contains list of services which
could be ca/orderers/consensus/peers based on if the type of organization.

Each organization will have a CA service under the service field. The snapshot of CA service with example values is
below

Services maps to the pods that will be deployed on the k8s cluster
This sample is an orderer service and includes a zk-kafka consensus
services:

ca:
name: ca
subject: "/C=GB/ST=London/L=London/O=Orderer/CN=ca.supplychain-net"
type: ca
grpc:
port: 7054

The fields under ca service are

Each organization with type as peer will have a peers service. The snapshot of peers service with example values is
below

peers:
- peer:
name: peer0
type: anchor # This can be anchor/nonanchor. Atleast one peer should be

→˓anchor peer.
gossippeeraddress: peer0.manufacturer-net:7051 # Internal Address of the

→˓other peer in same Org for gossip, same peer if there is only one peer
peerAddress: peer0.carrier-net.org3ambassador.blockchaincloudpoc.com:8443 #

→˓External URI of the peer
certificate: "/path/ca.crt" # certificate path for peer

(continues on next page)

5.2. Fabric operations 27

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

cli: disabled # Creates a peer cli pod depending upon the (enabled/
→˓disabled) tag.

grpc:
port: 7051

events:
port: 7053

couchdb:
port: 5984

restserver: # This is for the rest-api server
targetPort: 20001
port: 20001

expressapi: # This is for the express api server
targetPort: 3000
port: 3000

chaincode:
name: "chaincode_name" #This has to be replaced with the name of the

→˓chaincode
version: "chaincode_version" #This has to be replaced with the version of

→˓the chaincode
maindirectory: "chaincode_main" #The main directory where chaincode is

→˓needed to be placed
repository:
username: "git_username" # Git Service user who has rights to

→˓check-in in all branches
password: "git_password"
url: "github.com/hyperledger-labs/blockchain-automation-framework.git"
branch: develop
path: "chaincode_src" #The path to the chaincode

arguments: 'chaincode_args' #Arguments to be passed along with the
→˓chaincode parameters

endorsements: "" #Endorsements (if any) provided along with the chaincode

The fields under peer service are

The organization with orderer type will have concensus service. The snapshot of consensus service with example
values is below

consensus:
name: kafka
type: broker
replicas: 4
grpc:
port: 9092

The fields under consensus service are

The organization with orderer type will have orderers service. The snapshot of orderers service with example values
is below

orderers:
This sample has multiple orderers as an example.
You can use a single orderer for most production implementations.
- orderer:
name: orderer1
type: orderer
consensus: kafka
grpc:

(continues on next page)

28 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

port: 7050
- orderer:
name: orderer2
type: orderer
consensus: kafka
grpc:

port: 7050

The fields under orderer service are

\ ** feature is in future scope

5.2.2 Upgrading Hyperledger Fabric version

• Pre-requisites

• Modifying image versions

Pre-requisites

Hyperledger Fabric image versions, which are compatible with the target fabric version need to be known.

For example, for Fabric v1.4.8, these are the image tags of the supporting docker images

NOTE: This change only upgrades the docker images, any other configuration changes is not covered by this guide.
Please refer to Fabric documentation for any specific configuration changes.

Modifying image versions

The network.yaml here should be updated with the required version tag under network.version for upgrading
the base images of CA, orderer and peer. For example:

network:
version: 1.4.8

2 files need to be edited in order to support version change for kafka, zookeeper and couchDB

Executing Ansible playbook

The playbook site.yaml (ReadMe) can be run after the configuration file (for example: network.yaml for Fabric) has
been updated.

ansible-playbook platforms/shared/configuration/site.yaml --extra-vars "@path-to-
→˓network.yaml"

5.2. Fabric operations 29

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/samples/network-fabricv2.yaml
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/site.yaml
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/samples/network-fabricv2.yaml

Blockchain Automation Framework Documentation, Release 0.4.0

5.2.3 Adding a new organization in Hyperledger Fabric

• Prerequisites

• Modifying configuration file

• Running playbook to deploy Hyperledger Fabric network

Prerequisites

To add a new organization a fully configured Fabric network must be present already, i.e. a Fabric network which has
Orderers, Peers, Channels (with all Peers already in the channels). The corresponding crypto materials should also be
present in their respective Hashicorp Vault.

NOTE: Addition of a new organization has been tested on an existing network which is created by BAF. Networks
created using other methods may be suitable but this has not been tested by BAF team.

Modifying Configuration File

Refer this guide for details on editing the configuration file.

While modifying the configuration file(network.yaml) for adding new organization, all the existing organizations
should have org_status tag as existing and the new organization should have org_status tag as new under
network.channels e.g.

network:
channels:
- channel:
..
..
participants:
- organization:

..

..
org_status: new # new for new organization(s)

- organization:
..
..
org_status: existing # existing for old organization(s)

and under network.organizations as

network:
organizations:
- organization:

..

..
org_status: new # new for new organization(s)

- organization:
..
..
org_status: existing # existing for old organization(s)

30 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

The network.yaml file should contain the specific network.organization details along with the orderer
information.

For reference, see network-fabric-add-organization.yaml file here.

Run playbook

The add-new-organization.yaml playbook is used to add a new organization to the existing network. This can be done
using the following command

ansible-playbook platforms/shared/configuration/add-new-organization.yaml --extra-
→˓vars "@path-to-network.yaml"

NOTE: Make sure that the org_status label was set as new when the network is deployed for the first time. If you
have additional applications, please deploy them as well.

5.2.4 Adding a new Orderer organization in Hyperledger Fabric

• Prerequisites

• Modifying configuration file

• Running playbook to deploy Hyperledger Fabric network

Prerequisites

To add a new Orderer organization, a fully configured Fabric network must be present already setup, i.e. a Fabric
network which has Orderers, Peers, Channels (with all Peers already in the channels). The corresponding crypto
materials should also be present in their respective Hashicorp Vault.

NOTE: Addition of a new Orderer organization has been tested on an existing network which is created by BAF.
Networks created using other methods may be suitable but this has not been tested by BAF team. Addition of new
Orderer organization only works with Fabric 2.2.2 and RAFT Service.

Modifying Configuration File

Refer this guide for details on editing the configuration file.

While modifying the configuration file(network.yaml) for adding new orderer organization, all the existing orga-
nizations should have org_status tag as existing and the new organization should have org_status tag as
new under network.channels e.g.

network:
channels:
- channel:
..
..
participants:
- organization:

(continues on next page)

5.2. Fabric operations 31

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/samples
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/add-new-organization.yaml

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

..

..
org_status: new # new for new organization(s)

- organization:
..
..
org_status: existing # existing for old organization(s)

and under network.organizations as

network:
organizations:
- organization:

..

..
org_status: new # new for new organization(s)

- organization:
..
..
org_status: existing # existing for old organization(s)

The network.yaml file should contain the specific network.organization details along with the orderer
information.

For reference, see network-fabric-add-ordererorg.yaml file here.

Run playbook

The add-orderer-organization.yaml playbook is used to add a new Orderer organization to the existing network. This
can be done using the following command

ansible-playbook platforms/hyperledger-fabric/configuration/add-orderer-organization.
→˓yaml --extra-vars "@path-to-network.yaml"

NOTE: Make sure that the org_status label was set as new when the network is deployed for the first time. If you
have additional applications, please deploy them as well.

5.2.5 Adding a new channel in Hyperledger Fabric

• Prerequisites

• Modifying configuration file

• Running playbook to deploy Hyperledger Fabric network

Prerequisites

To add a new channel a fully configured Fabric network must be present already, i.e. a Fabric network which has
Orderers, Peers, Channels (with all Peers already in the channels). The corresponding crypto materials should also be
present in their respective Hashicorp Vault.

32 Chapter 5. Operations Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/add-orderer-organization.yaml
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/add-orderer-organization.yaml

Blockchain Automation Framework Documentation, Release 0.4.0

NOTE: Do not try to add a new organization as a part of this operation. Use only existing organization for new channel
addition.

Modifying Configuration File

Refer this guide for details on editing the configuration file.

While modifying the configuration file(network.yaml) for adding new channel, all the existing channel should
have channel_status tag as existing and the new channel should have channel_status tag as new under
network.channels e.g.

network:
channels:
- channel:
channel_status: existing
..
..
participants:
- organization:

..

..
- organization:

..

..
- channel:
channel_status: new
..
..
participants:
- organization:

..

..
- organization:

..

..

The network.yaml file should contain the specific network.organization details along with the orderer
information.

For reference, see network-fabric-add-channel.yaml file here.

Run playbook

The add-new-channel.yaml playbook is used to add a new channel to the existing network. This can be done using the
following command

ansible-playbook platforms/hyperledger-fabric/configuration/add-new-channel.yaml --
→˓extra-vars "@path-to-network.yaml"

NOTE: Make sure that the channel_status label was set as new when the network is deployed for the first time.
If you have additional applications, please deploy them as well.

5.2. Fabric operations 33

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/samples
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/add-new-channel.yaml

Blockchain Automation Framework Documentation, Release 0.4.0

5.2.6 Removing an organization in Hyperledger Fabric

• Prerequisites

• Modifying configuration file

• Running playbook to deploy Hyperledger Fabric network

Prerequisites

To remove an organization a fully configured Fabric network must be present already, i.e. a Fabric network which has
Orderers, Peers, Channels (with all Peers already in the channels). The corresponding crypto materials should also be
present in their respective Hashicorp Vault.

NOTE: Removing an organization has been tested on an existing network which is created by BAF. Networks created
using other methods may be suitable but this has not been tested by BAF team.

Modifying Configuration File

Refer this guide for details on editing the configuration file.

While modifying the configuration file(network.yaml) for removing an organization, all the existing organizations
should have org_status tag as existing and to be deleted organization should have org_status tag as
delete under network.channels e.g.

network:
channels:
- channel:
..
..
participants:
- organization:

..

..
org_status: delete # delete for to be deleted organization(s)

- organization:
..
..
org_status: existing # existing for old organization(s)

and under network.organizations as

network:
organizations:
- organization:

..

..
org_status: delete # delete for to be deleted organization(s)

- organization:
..
..
org_status: existing # existing for old organization(s)

34 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

The network.yaml file should contain the specific network.organization details along with the orderer
information.

For reference, see network-fabric-remove-organization.yaml file here.

Run playbook

The remove-organization.yaml playbook is used to remove organization(s) from the existing network. This can be
done using the following command

ansible-playbook platforms/shared/configuration/remove-organization.yaml --extra-vars
→˓"@path-to-network.yaml"

NOTE: Make sure that the org_status label was set as new when the network is deployed for the first time. If you
have additional applications, please deploy them as well.

5.2.7 Adding a new peer to existing organization in Hyperledger Fabric

• Prerequisites

• Modifying Configuration File

• Run playbook

• Chaincode Installation

Prerequisites

To add a new peer a fully configured Fabric network must be present already, i.e. a Fabric network which has Orderers,
Peers, Channels (with all Peers already in the channels) and the organization to which the peer is being added. The
corresponding crypto materials should also be present in their respective Hashicorp Vault.

NOTE: Addition of a new peer has been tested on an existing network which is created by BAF. Networks created
using other methods may be suitable but this has not been tested by BAF team.

Modifying Configuration File

A Sample configuration file for adding new peer is available here. Please go through this file and all the comments
there and edit accordingly.

For generic instructions on the Fabric configuration file, refer this guide.

While modifying the configuration file(network.yaml) for adding new peer, all the existing peers should have
peerstatus tag as existing and the new peers should have peerstatus tag as new under network.
channels e.g.

5.2. Fabric operations 35

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/samples
https://github.com/hyperledger-labs/blockchain-automation-framework/platforms/hyperledger-fabric/configuration/remove-organization.yaml
https://github.com/hyperledger-labs/blockchain-automation-framework/blob/main/platforms/hyperledger-fabric/configuration/samples/network-fabricv-add-peer.yaml

Blockchain Automation Framework Documentation, Release 0.4.0

network:
channels:
- channel:
..
..
participants:
- organization:

peers:
- peer:

..

..
peerstatus: new # new for new peers(s)
gossipAddress: peer0.xxxx.com # gossip Address must be one existing peer

- peer:
..
..
peerstatus: existing # existing for existing peers(s)

and under network.organizations as

network:
organizations:
- organization:

org_status: existing # org_status must be existing when adding peer
..
..
services:

peers:
- peer:
..
..
peerstatus: new # new for new peers(s)
gossipAddress: peer0.xxxx.com # gossip Address must be one existing peer

- peer:
..
..
peerstatus: existing # existing for existing peers(s)

The network.yaml file should contain the specific network.organization details. Orderer information is
needed if you are going to install/upgrade the existing chaincodes, otherwise it is not needed. And the org_status
must be existing when adding peer.

Ensure the following is considered when adding the new peer on a different cluster:

• The CA server is accessible publicly or at least from the new cluster.

• The CA server public certificate is stored in a local path and that path provided in network.yaml.

• There is a single Hashicorp Vault and both clusters (as well as ansible controller) can access it.

• Admin User certs have been already generated and store in Vault (this is taken care of by deploy-network.yaml
playbook if you are using BAF to setup the network).

• The network.env.type is different for different clusters.

• The GitOps release directory gitops.release_dir is different for different clusters.

36 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

Run playbook

The add-peer.yaml playbook is used to add a new peer to an existing organization in the existing network. This can be
done using the following command

ansible-playbook platforms/hyperledger-fabric/configuration/add-peer.yaml --extra-
→˓vars "@path-to-network.yaml"

NOTE: The peerstatus is not required when the network is deployed for the first time but is mandatory for
addition of new peer. If you have additional applications, please deploy them as well.

Chaincode Installation

Use the same network.yaml if you need to install chaincode on the new peers.

NOTE: With Fabric 2.2 chaincode lifecyle, re-installing chaincode on new peer is not needed as when the blocks are
synced, the new peer will have access to already committed chaincode. If still needed, you can upgrade the version of
the chaincode and install on all peers.

Refer this guide for details on installing chaincode.

5.2.8 Adding a new RAFT orderer to existing Orderer organization in Hyperledger
Fabric

• Prerequisites

• Modifying Configuration File

• Run playbook

• Chaincode Installation

Prerequisites

To add a new Orderer node, a fully configured Fabric network must be present already, i.e. a Fabric network which
has Orderers, Peers, Channels (with all Peers already in the channels) and the organization to which the peer is being
added. The corresponding crypto materials should also be present in their respective Hashicorp Vault.

NOTE: Addition of a new Orderer node has been tested on an existing network which is created by BAF. Networks
created using other methods may be suitable but this has not been tested by BAF team. This works only for RAFT
Orderer.

5.2. Fabric operations 37

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/add-peer.yaml

Blockchain Automation Framework Documentation, Release 0.4.0

Modifying Configuration File

A Sample configuration file for adding new orderer is available here. Please go through this file and all the comments
there and edit accordingly.

For generic instructions on the Fabric configuration file, refer this guide.

While modifying the configuration file(network.yaml) for adding new peer, all the existing orderers should
have status tag as existing and the new orderers should have status tag as new under network.
organizations as

network:
organizations:
- organization:

org_status: existing # org_status must be existing when adding peer
..
..
services:

orderers:
- orderer:
..
..
status: new # new for new peers(s)

- orderer:
..
..
status: existing # existing for existing peers(s)

The network.yaml file should contain the specific network.organization details.

Ensure the following is considered when adding the new orderer on a different cluster:

• The CA server is accessible publicly or at least from the new cluster.

• The CA server public certificate is stored in a local path and that path provided in network.yaml.

• There is a single Hashicorp Vault and both clusters (as well as ansible controller) can access it.

• Admin User certs have been already generated and store in Vault (this is taken care of by deploy-network.yaml
playbook if you are using BAF to setup the network).

• The network.env.type is different for different clusters.

• The GitOps release directory gitops.release_dir is different for different clusters.

Run playbook

The add-orderer.yaml playbook is used to add a new peer to an existing organization in the existing network. This can
be done using the following command

ansible-playbook platforms/hyperledger-fabric/configuration/add-orderer.yaml --extra-
→˓vars "@path-to-network.yaml"

NOTE: The orderer.status is not required when the network is deployed for the first time but is mandatory for
addition of new orderer.

38 Chapter 5. Operations Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/blob/main/platforms/hyperledger-fabric/configuration/samples/network-fabricv2-raft-add-orderer.yaml
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/add-orderer.yaml

Blockchain Automation Framework Documentation, Release 0.4.0

5.2.9 Installing and instantiating chaincode in BAF deployed Hyperledger Fabric
Network

• Pre-requisites

• Modifying configuration file

• Chaincode Operations in BAF for the deployed Hyperledger Fabric network

Pre-requisites

Hyperledger Fabric network deployed and network.yaml configuration file already set.

Modifying configuration file

Refer this guide for details on editing the configuration file.

The network.yaml file should contain the specific network.organizations.services.peers.
chaincode section, which is consumed when the chaincode-ops playbook is run

For reference, following snippet shows that section of network.yaml

network:

..

..
organizations:
- organization:

name: manufacturer
..
..
services:

peers:
- peer:
name: peer0
..
chaincode:

name: "chaincode_name" #This has to be replaced with the name of the
→˓chaincode

version: "chaincode_version" # This has to be different than the current
→˓version

maindirectory: "chaincode_main" #The main directory where chaincode is
→˓needed to be placed

repository:
username: "git_username" # Git Service user who has rights to

→˓check-in in all branches
password: "git_password"
url: "github.com/hyperledger-labs/blockchain-automation-framework.git"
branch: develop
path: "chaincode_src" #The path to the chaincode

arguments: 'chaincode_args' #Arguments to be passed along with the
→˓chaincode parameters

endorsements: "" #Endorsements (if any) provided along with the chaincode

5.2. Fabric operations 39

Blockchain Automation Framework Documentation, Release 0.4.0

Chaincode Operations in BAF for the deployed Hyperledger Fabric network

The playbook chaincode-ops.yaml is used to install and instantiate chaincode for the existing fabric network. For
Fabric v2.2 multiple operations such as approve, commit and invoke the chaincode are available in the same playbook.
This can be done by using the following command

ansible-playbook platforms/hyperledger-fabric/configuration/chaincode-ops.yaml --
→˓extra-vars "@path-to-network.yaml"

NOTE: The same process is executed for installing and instantiating multiple chaincodes

5.2.10 Upgrading chaincode in Hyperledger Fabric

• Upgrading chaincode in Hyperledger Fabric

– Pre-requisites

– Modifying configuration file

– Run playbook for Fabric version 1.4.x

– Run playbook for Fabric version 2.2.x

Pre-requisites

Hyperledger Fabric network deployed, network.yaml configuration file already set and chaincode is installed and
instantiated or packaged, approved and commited in case of Fabric version 2.2.

Modifying configuration file

Refer this guide for details on editing the configuration file.

The network.yaml file should contain the specific network.organizations.services.peers.
chaincode.arguments, network.organizations.services.peers.chaincode.version and
network.organizations.services.peers.chaincode.name variables which are used as arguments
while upgrading the chaincode.

For reference, following snippet shows that section of network.yaml

network:

..

..
organizations:
- organization:

name: manufacturer
..
..
services:

peers:
- peer:
name: peer0
..
chaincode:

(continues on next page)

40 Chapter 5. Operations Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/chaincode-ops.yaml

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

name: "chaincode_name" #This has to be replaced with the name of the
→˓chaincode

version: "chaincode_version" # This has to be greater than the current
→˓version, should be an integer.

maindirectory: "chaincode_main" #The main directory where chaincode is
→˓needed to be placed

lang: "java" # The chaincode language, optional field with default vaule
→˓of 'go'.

repository:
username: "git_username" # Git Service user who has rights to

→˓check-in in all branches
password: "git_password"
url: "github.com/hyperledger-labs/blockchain-automation-framework.git"
branch: develop
path: "chaincode_src" #The path to the chaincode

arguments: 'chaincode_args' #Arguments to be passed along with the
→˓chaincode parameters

endorsements: "" #Endorsements (if any) provided along with the chaincode

Run playbook for Fabric version 1.4.x

The playbook chaincode-upgrade.yaml is used to upgrade chaincode to a new version in the existing fabric network
with version 1.4.x. This can be done by using the following command

ansible-playbook platforms/hyperledger-fabric/configuration/chaincode-upgrade.
→˓yaml --extra-vars "@path-to-network.yaml"

Run playbook for Fabric version 2.2.x

The playbook chaincode-ops.yaml is used to upgrade chaincode to a new version in the existing fabric network with
version 2.2.x. This can be done by using the following command

ansible-playbook platforms/hyperledger-fabric/configuration/chaincode-ops.yaml --
→˓extra-vars "@path-to-network.yaml" -e "add_new_org='false'"

NOTE: The Chaincode should be upgraded for all participants of the channel.

5.3 Corda operations

5.3.1 Configuration file specification: R3 Corda

A network.yaml file is the base configuration file for setting up a Corda DLT network. This file con-
tains all the information related to the infrastructure and network specifications. Here is the structure of it.

5.3. Corda operations 41

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/chaincode-upgrade.yaml
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/chaincode-ops.yaml

Blockchain Automation Framework Documentation, Release 0.4.0

Before setting up a Corda DLT/Blockchain network, this file needs to be updated with the required specifications.
A sample configuration file is provide in the repo path:platforms/r3-corda/configuration/samples/
network-cordav2.yaml

A json-schema definition is provided in platforms/network-schema.json to assist with semantic validations
and lints. You can use your favorite yaml lint plugin compatible with json-schema specification, like redhat.
vscode-yaml for VSCode. You need to adjust the directive in template located in the first line based on your actual
build directory:

yaml-language-server: $schema=../platforms/network-schema.json

The configurations are grouped in the following sections for better understanding.

• type

• version

• frontend

• env

• docker

• network_services

42 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

• organizations

Here is the snapshot from the sample configuration file

The sections in the sample configuration file are

type defines the platform choice like corda/fabric/quorum. Use corda for Corda Opensource and
corda-enterprise for Corda Enterprise.

version defines the version of platform being used, here in example the Corda version is 4.0, the corda version 4.7
is supported by latest release. Please note only 4.4 above is supported for Corda Enterprise.

frontend is a flag which defines if frontend is enabled for nodes or not. Its value can only be enabled/disabled. This
is only applicable if the sample Supplychain App is being installed.

env section contains the environment type and additional (other than 8443) Ambassador port configuration. Value for
proxy field under this section has to be ‘ambassador’ as ‘haproxy’ has not been implemented for Corda.

The snapshot of the env section with example values is below

env:
type: "env-type" # tag for the environment. Important to run

→˓multiple flux on single cluster
proxy: ambassador # value has to be 'ambassador' as 'haproxy' has

→˓not been implemented for Corda
ambassadorPorts: # Any additional Ambassador ports can be given

→˓here, this is valid only if proxy='ambassador'
portRange: # For a range of ports
from: 15010
to: 15043

ports: 15020,15021 # For specific ports
loadBalancerSourceRanges: # (Optional) Default value is '0.0.0.0/0', this value

→˓can be changed to any other IP adres or list (comma-separated without spaces) of IP
→˓adresses, this is valid only if proxy='ambassador'

retry_count: 20 # Retry count for the checks
external_dns: enabled # Should be enabled if using external-dns for

→˓automatic route configuration

The fields under env section are

docker section contains the credentials of the repository where all the required images are built and stored.

5.3. Corda operations 43

Blockchain Automation Framework Documentation, Release 0.4.0

For Opensource Corda, the required instructions are found here.

For Corda Enterprise, all Docker images has to be built and stored in a private Docker registry before running the
Ansible playbooks. The required instructions are found here.

The snapshot of the docker section with example values is below

Docker registry details where images are stored. This will be used to create k8s
→˓secrets
Please ensure all required images are built and stored in this registry.
docker:
url: "<url>"
username: "<username>"
password: "<password>"

The fields under docker section are

NOTE: Please follow these instructions to build and store the docker images before running the Ansible playbooks.

The snapshot of the network_services section with example values is below

Remote connection information for doorman/idman and networkmap (will be blank or
→˓removed for hosting organization)
network_services:
- service:

name: doorman
type: doorman
uri: https://doorman.test.corda.blockchaincloudpoc.com:8443
certificate: home_dir/platforms/r3-corda/configuration/build/corda/doorman/tls/

→˓ambassador.crt
crlissuer_subject: "CN=Corda TLS CRL Authority,OU=Corda UAT,O=R3 HoldCo LLC,

→˓L=New York,C=US"
- service:

name: networkmap
type: networkmap
uri: https://networkmap.test.corda.blockchaincloudpoc.com:8443
certificate: home_dir/platforms/r3-corda/configuration/build/corda/networkmap/

→˓tls/ambassador.crt
truststore: home_dir/platforms/r3-corda-ent/configuration/build/

→˓networkroottruststore.jks #Certificate should be encoded in base64 format
truststore_pass: rootpassword

The network_services section contains a list of doorman/networkmap which is exposed to the network. Each
service has the following fields:

The organizations section allows specification of one or many organizations that will be connecting to a network.
If an organization is also hosting the root of the network (e.g. doorman, membership service, etc), then these services
should be listed in this section as well. In the sample example the 1st Organisation is hosting the root of the network,
so the services doorman, nms and notary are listed under the 1st organization’s service.

The snapshot of an organization field with sample values is below

- organization:
name: manufacturer
country: CH
state: Zurich

(continues on next page)

44 Chapter 5. Operations Guide

../architectureref/corda.html#docker-images
../architectureref/corda-ent.html#docker-images
../operations/configure_prerequisites.html#docker

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

location: Zurich
subject: "O=Manufacturer,OU=Manufacturer,L=Zurich,C=CH"
type: node
external_url_suffix: test.corda.blockchaincloudpoc.com
cloud_provider: aws # Options: aws, azure, gcp

Each organization under the organizations section has the following fields.

For the aws and k8s field the snapshot with sample values is below

aws:
access_key: "<aws_access_key>" # AWS Access key, only used when cloud_

→˓provider=aws
secret_key: "<aws_secret>" # AWS Secret key, only used when cloud_

→˓provider=aws

Kubernetes cluster deployment variables.
k8s:

region: "<k8s_region>"
context: "<cluster_context>"
config_file: "<path_to_k8s_config_file>"

The aws field under each organisation contains: (This will be ignored if cloud_provider is not ‘aws’)

The k8s field under each organisation contains

For gitops fields the snapshot from the sample configuration file with the example values is below

Git Repo details which will be used by GitOps/Flux.
gitops:

git_protocol: "https" # Option for git over https or ssh
git_url: "https://github.com/<username>/blockchain-automation-framework.git"

→˓# Gitops htpps or ssh url for flux value files
branch: "<branch_name>" #

→˓Git branch where release is being made
release_dir: "platforms/r3-corda/releases/dev" # Relative Path in the Git

→˓repo for flux sync per environment.
chart_source: "platforms/r3-corda/charts" # Relative Path where the Helm

→˓charts are stored in Git repo
git_repo: "github.com/<username>/blockchain-automation-framework.git"
username: "<username>" # Git Service user who has rights to check-in

→˓in all branches
password: "<password>" # Git Server user password/personal token

→˓(Optional for ssh; Required for https)
email: "<git_email>" # Email to use in git config
private_key: "<path to gitops private key>" # Path to private key (Optional

→˓for https; Required for ssh)

The gitops field under each organization contains

The credentials field under each organization contains

For organization as type cenm the credential block looks like

credentials:
keystore:
keystore: cordacadevpass #notary keystore password
idman: password #idman keystore password

(continues on next page)

5.3. Corda operations 45

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

networkmap: password #networkmap keystore password
subordinateca: password #subordinateCA keystore password
rootca: password # rootCA keystore password
tlscrlsigner: password #tls-crl-signer keystore password

truststore:
truststore: trustpass #notary truststore password
rootca: password #network root truststore password
ssl: password #corda ssl truststore password

ssl:
networkmap: password #ssl networkmap keystore password
idman: password #ssl idman keystore password
signer: password #ssl signer keystore password
root: password #ssl root keystore password

For organization as type node the credential section is under peers section and looks like

credentials:
truststore: trustpass #node truststore password
keystore: cordacadevpass #node keystore password

For cordapps fields the snapshot from the sample configuration file with the example values is below: This has not
been implented for Corda Enterprise.

Cordapps Repository details (optional use if cordapps jar are store in a
→˓repository)

cordapps:
jars:
- jar:

e.g https://alm.accenture.com/nexus/repository/
→˓AccentureBlockchainFulcrum_Release/com/supplychain/bcc/cordapp-supply-chain/0.1/
→˓cordapp-supply-chain-0.1.jar

url:
- jar:

e.g https://alm.accenture.com/nexus/repository/
→˓AccentureBlockchainFulcrum_Release/com/supplychain/bcc/cordapp-contracts-states/0.1/
→˓cordapp-contracts-states-0.1.jar

url:
username: "cordapps_repository_username"
password: "cordapps_repository_password"

The cordapps optional field under each organization contains

For Corda Enterprise, following additional fields have been added under each organisation.

firewall:
enabled: true # true if firewall components are to be deployed
subject: "CN=Test Firewall CA Certificate, OU=HQ, O=HoldCo LLC, L=New York,

→˓C=US"
credentials:

firewallca: firewallcapassword
float: floatpassword
bridge: bridgepassword

The Firewall field under each node type organization contains; valid only for enterprise corda

The services field for each organization under organizations section of Corda contains list of services which
could be doorman/idman/nms/notary/peers for opensource, and additionally idman/networkmap/signer/bridge/float for
Corda Enterprise.

46 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

The snapshot of doorman service with example values is below

services:
doorman:
name: doormanskar
subject: "CN=Corda Doorman CA,OU=DLT,O=DLT,L=Berlin,C=DE"
db_subject: "/C=US/ST=California/L=San Francisco/O=My Company Ltd/OU=DBA/

→˓CN=mongoDB"
type: doorman
ports:

servicePort: 8080
targetPort: 8080

tls: "on"

The fields under doorman service are

The snapshot of nms service example values is below

nms:
name: networkmapskar
subject: "CN=Network Map,OU=FRA,O=FRA,L=Berlin,C=DE"
db_subject: "/C=US/ST=California/L=San Francisco/O=My Company Ltd/OU=DBA/

→˓CN=mongoDB"
type: networkmap
ports:
servicePort: 8080
targetPort: 8080

tls: "on"

The fields under nms service are

For Corda Enterprise, following services must be added to CENM Support.

The snapshot of idman service with example values is below

services:
idman:
name: idman
subject: "CN=Test Identity Manager Service Certificate, OU=HQ, O=HoldCo LLC,

→˓ L=New York, C=US"
crlissuer_subject: "CN=Corda TLS CRL Authority,OU=Corda UAT,O=R3 HoldCo LLC,

→˓L=New York,C=US"
type: cenm-idman
port: 10000

The fields under idman service are

The snapshot of networkmap service with example values is below

services:
networkmap:
name: networkmap
subject: "CN=Test Network Map Service Certificate, OU=HQ, O=HoldCo LLC,

→˓L=New York, C=US"
type: cenm-networkmap
ports:
servicePort: 10000
targetPort: 10000

The fields under networkmap service are

5.3. Corda operations 47

Blockchain Automation Framework Documentation, Release 0.4.0

The snapshot of signer service with example values is below

services:
signer:
name: signer
subject: "CN=Test Subordinate CA Certificate, OU=HQ, O=HoldCo LLC, L=New

→˓York, C=US"
type: cenm-signer
ports:
servicePort: 8080
targetPort: 8080

The fields under signer service are

The snapshot of notary service with example values is below

Currently only supporting a single notary cluster, but may want to expand
→˓in the future

notary:
name: notary1
subject: "O=Notary,OU=Notary,L=London,C=GB"
serviceName: "O=Notary Service,OU=Notary,L=London,C=GB" # available for

→˓Corda 4.7 onwards to support HA Notary
type: notary
p2p:
port: 10002
targetPort: 10002
ambassador: 15010 #Port for ambassador service (must be from env.

→˓ambassadorPorts above)
rpc:
port: 10003
targetPort: 10003

rpcadmin:
port: 10005
targetPort: 10005

dbtcp:
port: 9101
targetPort: 1521

dbweb:
port: 8080
targetPort: 81

The fields under notary service are

The snapshot of float service with example values is below

float:
name: float
subject: "CN=Test Float Certificate, OU=HQ, O=HoldCo LLC, L=New York, C=US"
external_url_suffix: test.cordafloat.blockchaincloudpoc.com
cloud_provider: aws # Options: aws, azure, gcp
aws:
access_key: "aws_access_key" # AWS Access key, only used when cloud_

→˓provider=aws
secret_key: "aws_secret_key" # AWS Secret key, only used when cloud_

→˓provider=aws
k8s:
context: "float_cluster_context"
config_file: "float_cluster_config"

(continues on next page)

48 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

vault:
url: "float_vault_addr"
root_token: "float_vault_root_token"

gitops:
git_url: "https://github.com/<username>/blockchain-automation-framework.git

→˓" # Gitops https or ssh url for flux value files
branch: "develop" # Git branch where release is being made
release_dir: "platforms/r3-corda-ent/releases/float" # Relative Path in the

→˓Git repo for flux sync per environment.
chart_source: "platforms/r3-corda-ent/charts" # Relative Path where the

→˓Helm charts are stored in Git repo
git_repo: "github.com/<username>/blockchain-automation-framework.git" #

→˓Gitops git repository URL for git push
username: "git_username" # Git Service user who has rights to

→˓check-in in all branches
password: "git_access_token" # Git Server user password/access

→˓token (Optional for ssh; Required for https)
email: "git_email" # Email to use in git config
private_key: "path_to_private_key" # Path to private key file

→˓which has write-access to the git repo (Optional for https; Required for ssh)
ports:
p2p_port: 40000
tunnelport: 39999
ambassador_tunnel_port: 15021
ambassador_p2p_port: 15020

The fields under float service are below. Valid for corda enterprise only.

The fields under bridge service are below. Valid for corda enterprise only.

The snapshot of peer service with example values is below

The participating nodes are named as peers
services:

peers:
- peer:
name: manufacturerskar
subject: "O=Manufacturer,OU=Manufacturer,L=47.38/8.54/Zurich,C=CH"
type: node
p2p:
port: 10002
targetPort: 10002
ambassador: 15010 #Port for ambassador service (must be from env.

→˓ambassadorPorts above)
rpc:
port: 10003
targetPort: 10003

rpcadmin:
port: 10005
targetPort: 10005

dbtcp:
port: 9101
targetPort: 1521

dbweb:
port: 8080
targetPort: 81

springboot: # This is for the springboot server

(continues on next page)

5.3. Corda operations 49

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

targetPort: 20001
port: 20001

expressapi: # This is for the express api server
targetPort: 3000
port: 3000

The fields under each peer service are

5.3.2 Adding cordapps to R3 Corda network

1. Adding directly from build directory

Pre-requisites:

R3 Corda network deployed and network.yaml configuration file already set.

Build CorDapp jars

Build the CorDapp jars. If you have multiple jars, place them in a single location e.g. at path/to/cordapp-jars.

Run playbook

The playbook deploy-cordapps.yaml is used to deploy cordapps over the existing R3 Corda network. This can be done
manually using the following command

ansible-playbook platforms/r3-corda/configuration/deploy-cordapps.yaml -e "@path-to-
→˓network.yaml" -e "source_dir='path/to/cordapp-jars'"

2. Adding from a nexus repository

Pre-requisites:

Build the CorDapp jars. If you have multiple jars, place them in a single location e.g. at path/to/cordapp-jars.
Publishing the CorDapp jars to the nexus repository.

In order to publish the jars add the following information in example\supplychain-app\corda\gradle.
properties file

Repository URL e.g : https://alm.accenture.com/nexus/repository/
→˓AccentureBlockchainFulcrum_Release/
repoURI=nexus_repository_url
Repository credentials
repoUser=repository_user_name
repoPassword=repository_user_password

Add the appropriate jar information as artifacts in example\supplychain-app\corda\build.gradle file,
change this file only if you need to add or remove jars other that the ones mentioned below

50 Chapter 5. Operations Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda/configuration/deploy-cordapps.yaml

Blockchain Automation Framework Documentation, Release 0.4.0

publishing{
publications {
maven1(MavenPublication) {

artifactId = 'cordapp-supply-chain'
artifact('build/cordapp-supply-chain-0.1.jar')

}
maven2(MavenPublication) {

artifactId = 'cordapp-contracts-states'
artifact('build/cordapp-contracts-states-0.1.jar')

}
}
repositories {
maven {

url project.repoURI
credentials {

username project.repoUser
password project.repoPassword
}

}
}

}

Publishing the artifacts/jars, use the below command to publish the jars into the nexus repository

gradle publish

Change the corda configuration file to add jar information under the cordapps field of required organisation.

Example given in the sample configuration fileplatforms/r3-corda/configuration/samples/
network-cordav2.yaml

The snapshot from the sample configuration file with the example values is below

Cordapps Repository details (optional use if cordapps jar are store in a
→˓repository)

cordapps:
jars:
- jar:

e.g https://alm.accenture.com/nexus/repository/
→˓AccentureBlockchainFulcrum_Release/com/supplychain/bcc/cordapp-supply-chain/0.1/
→˓cordapp-supply-chain-0.1.jar

url:
- jar:

e.g https://alm.accenture.com/nexus/repository/
→˓AccentureBlockchainFulcrum_Release/com/supplychain/bcc/cordapp-contracts-states/0.1/
→˓cordapp-contracts-states-0.1.jar

url:
username: "cordapps_repository_username"
password: "cordapps_repository_password"

Adding the jars by deploying the network

After the configuration file is updated and saved, run the following command from the blockchain-automation-
framework folder to deploy your network.

ansible-playbook platforms/shared/configuration/site.yaml --extra-vars "@path-to-
→˓network.yaml" (continues on next page)

5.3. Corda operations 51

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

This will deploy the network and add the cordapps.

5.3.3 Adding a new organization in R3 Corda

• Prerequisites

• Create configuration file

• Run playbook

Prerequisites

To add a new organization, Corda Doorman/Idman and Networkmap services should already be running. The public
certificates from Doorman/Idman and Networkmap should be available and specified in the configuration file.

NOTE: Addition of a new organization has been tested on an existing network which is created by BAF. Networks
created using other methods may be suitable but this has not been tested by BAF team.

Create Configuration File

Refer this guide for details on editing the configuration file.

The network.yaml file should contain the specific network.organization details along with the network
service information about the networkmap and doorman service.

NOTE: Make sure the doorman and networkmap service certificates are in plain text and not encoded in base64 or
any other encoding scheme, along with correct paths to them mentioned in network.yaml.

For reference, sample network.yaml file looks like below (but always check the latest at platforms/
r3-corda/configuration/samples):

network:
Network level configuration specifies the attributes required for each

→˓organization
to join an existing network.
type: corda
version: 4.0
#enabled flag is frontend is enabled for nodes
frontend: enabled

#Environment section for Kubernetes setup
env:
type: "env_type" # tag for the environment. Important to run

→˓multiple flux on single cluster
proxy: ambassador # value has to be 'ambassador' as 'haproxy' has

→˓not been implemented for Corda

(continues on next page)

52 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

ambassadorPorts: # Any additional Ambassador ports can be given
→˓here, this is valid only if proxy='ambassador'

portRange: # For a range of ports
from: 15010
to: 15043

ports: 15020,15021 # For specific ports
retry_count: 20 # Retry count for the checks
external_dns: enabled # Should be enabled if using external-dns for

→˓automatic route configuration

Docker registry details where images are stored. This will be used to create k8s
→˓secrets
Please ensure all required images are built and stored in this registry.
Do not check-in docker_password.
docker:
url: "docker_url"
username: "docker_username"
password: "docker_password"

Remote connection information for doorman and networkmap (will be blank or
→˓removed for hosting organization)
network_service:
- service:

type: doorman
uri: https://doorman.test.corda.blockchaincloudpoc.com:8443
certificate: home_dir/platforms/r3-corda/configuration/build/corda/doorman/tls/

→˓ambassador.crt
- service:

type: networkmap
uri: https://networkmap.test.corda.blockchaincloudpoc.com:8443
certificate: home_dir/platforms/r3-corda/configuration/build/corda/networkmap/

→˓tls/ambassador.crt

Allows specification of one or many organizations that will be connecting to a
→˓network.
If an organization is also hosting the root of the network (e.g. doorman,

→˓membership service, etc),
then these services should be listed in this section as well.
organizations:
Specification for the new organization. Each organization maps to a VPC and a

→˓separate k8s cluster
- organization:

name: neworg
country: US
state: New York
location: New York
subject: "O=Neworg,OU=Neworg,L=New York,C=US"
type: node
external_url_suffix: test.corda.blockchaincloudpoc.com

cloud_provider: aws # Options: aws, azure, gcp
aws:

access_key: "aws_access_key" # AWS Access key, only used when cloud_
→˓provider=aws

secret_key: "aws_secret_key" # AWS Secret key, only used when cloud_
→˓provider=aws

(continues on next page)

5.3. Corda operations 53

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

Kubernetes cluster deployment variables. The config file path and name has to
→˓be provided in case

the cluster has already been created.
k8s:

region: "cluster_region"
context: "cluster_context"
config_file: "cluster_config"

Hashicorp Vault server address and root-token. Vault should be unsealed.
Do not check-in root_token
vault:

url: "vault_addr"
root_token: "vault_root_token"

Git Repo details which will be used by GitOps/Flux.
Do not check-in git_password
gitops:

git_protocol: "https" # Option for git over https or ssh
git_url: "gitops_ssh_url" # Gitops https or ssh url for flux value

→˓files like "https://github.com/hyperledger-labs/blockchain-automation-framework.git"
branch: "gitops_branch" # Git branch where release is being made
release_dir: "gitops_release_dir" # Relative Path in the Git repo for flux

→˓sync per environment.
chart_source: "gitops_charts" # Relative Path where the Helm charts are

→˓stored in Git repo
git_repo: "gitops_repo_url" # Gitops git repository URL for git push like

→˓"github.com/hyperledger-labs/blockchain-automation-framework.git"
username: "git_username" # Git Service user who has rights to check-

→˓in in all branches
password: "git_password" # Git Server user access token (Optional

→˓for ssh; Required for https)
email: "git_email" # Email to use in git config
private_key: "path_to_private_key" # Path to private key file which

→˓has write-access to the git repo (Optional for https; Required for ssh)

services:
peers:
- peer:
name: neworg
subject: "O=Neworg,OU=Neworg,L=New York,C=US"
type: node
p2p:

port: 10002
targetPort: 10002
ambassador: 10070 #Port for ambassador service (use one port per

→˓org if using single cluster)
rpc:
port: 10003
targetPort: 10003

rpcadmin:
port: 10005
targetPort: 10005

dbtcp:
port: 9101
targetPort: 1521

dbweb:
port: 8080

(continues on next page)

54 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

targetPort: 81
springboot:

targetPort: 20001
port: 20001

expressapi:
targetPort: 3000
port: 3000

Run playbook

The add-new-organization.yaml playbook is used to add a new organization to the existing network. This can be done
using the following command

ansible-playbook platforms/shared/configuration/add-new-organization.yaml --extra-
→˓vars "@path-to-network.yaml"

NOTE: If you have CorDapps and applications, please deploy them as well.

5.3.4 Adding a new Notary organization in R3 Corda Enterprise

Corda Enterprise Network Map (CENM) 1.2 does not allow dynamic addition of new Notaries to an existing network
via API Call. This process is manual and involves few steps as described in the Corda Official Documentation here.
To overcome this, we have created an Ansible playbook. The playbook will update the Networkmap service so that
a networkparameter update is submitted. But the run flagDay command has to be manual, as it is not possible
to login to each Network Participant and accept the new parameters. Also, whenever the parameter update happens,
it will trigger a node shutdown. Hence, the run flagDay command must be executed when no transactions are
happening in the network.

run flagDay command must be run after the network parameters update deadline is over (+10 minutes by default).
And this command must be run during downtime as it will trigger Corda node restart.

• Prerequisites

• Deploy new Notary Service

• Run playbook

• Run parameter update

Prerequisites

To add a new Notary organization, Corda Idman and Networkmap services should already be running. The public
certificates and NetworkTrustStore from Idman and Networkmap should be available and specified in the configuration
file.

NOTE: Addition of a new Notary organization has been tested on an existing network which is created by BAF.
Networks created using other methods may be suitable but this has not been tested by BAF team.

5.3. Corda operations 55

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/add-new-organization.yaml
https://docs.corda.net/docs/cenm/1.2/updating-network-parameters.html#updating-the-network-parameters

Blockchain Automation Framework Documentation, Release 0.4.0

Deploy new Notary Service

Deploy the additional notary/notaries as separate organizations by following the guidance on how to add new organi-
zations here. A sample network.yaml for adding new notary orgs can be found here.

Run Playbook

After the new notary is running, execute the playbook platforms/r3-corda-ent/configuration/
add-notaries.yaml with the same configuration file as used in previous step.

ansible-playbook platforms/r3-corda-ent/configuration/add-notaries.yaml --extra-vars
→˓"@path-to-new-network.yaml"

Run Parameter Update

The default networkparameters update timeout is 10 minutes, so wait for 10 minutes and then login to the networkmap
ssh shell from the networkmap pod by running the commands below

#Login to networkmap pod
kubectl exec -it networkmap-0 -n <cenm-namespace> -c main -- bash
root@networkmap-0:/opt/corda# ssh nmap@localhost -p 2222 # say yes for hostkey
→˓message
Password authentication
Password: # Enter password at prompt

_ __ __ __ ___
/ | / /__ / /_/ |/ /___ _____

/ |/ / _ \/ __/ /|_/ / __ `/ __ \
/ /| / __/ /_/ / / / /_/ / /_/ /
/_/ |_/___/__/_/ /_/__,_/ .___/

/_/
Welcome to the Network Map interactive shell.
Type 'help' to see what commands are available.

Thu Dec 03 17:40:37 GMT 2020>>> view notaries
→˓# to view current notaries

Run the following commands to execute flagday so that latest network parameters
→˓update is accepted

Thu Dec 03 17:43:04 GMT 2020>>> view networkParametersUpdate # to check the
→˓current update (will be empty if no updates are in progress)

Thu Dec 03 17:43:57 GMT 2020>>> run flagDay # to initiate
→˓flagDay which will apply the networkParameters update only if the deadline has
→˓passed

If you want to cancel the update, run following
Thu Dec 03 17:45:17 GMT 2020>>> run cancelUpdate

Ensure that the Corda Node users know that the network parameters have changed which will trigger node restart
automatically.

56 Chapter 5. Operations Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/develop/platforms/r3-corda-ent/configuration/samples

Blockchain Automation Framework Documentation, Release 0.4.0

5.4 Besu operations

5.4.1 Configuration file specification: Hyperledger Besu

A network.yaml file is the base configuration file designed in the Blockchain Automation Frame-
work for setting up a Hyperledger Besu DLT/Blockchain network. This file contains all the
configurations related to the network that has to be deployed. Below shows its structure.

Before setting up a Hyperledger Besu DLT/Blockchain network, this file needs to be updated with the required
specifications.A sample configuration file is provided in the repo path:platforms/hyperledger-besu/
configuration/samples/network-besu.yaml

A json-schema definition is provided in platforms/network-schema.json to assist with semantic validations
and lints. You can use your favorite yaml lint plugin compatible with json-schema specification, like redhat.
vscode-yaml for VSCode. You need to adjust the directive in template located in the first line based on your actual
build directory:

yaml-language-server: $schema=../platforms/network-schema.json

The configurations are grouped in the following sections for better understanding.

• type

• version

• env

• docker

• config

5.4. Besu operations 57

Blockchain Automation Framework Documentation, Release 0.4.0

• organizations

Here is the snapshot from the sample configuration file

The sections in the sample configuration file are

type defines the platform choice like corda/fabric/indy/quorum/besu, here in the example its besu.

version defines the version of platform being used. The current Hyperledger Besu version support is only for 1.5.5
and 21.1.1.

env section contains the environment type and additional (other than 8443) Ambassador port configuration. Vaule for
proxy field under this section can be ‘ambassador’ as ‘haproxy’ has not been implemented for Besu.

The snapshot of the env section with example value is below

env:
type: "env-type" # tag for the environment. Important to run

→˓multiple flux on single cluster
proxy: ambassador # value has to be 'ambassador' as 'haproxy' has

→˓not been implemented for Hyperledger Besu
These ports are enabled per cluster, so if you have multiple clusters you do

→˓not need so many ports
This sample uses a single cluster, so we have to open 4 ports for each Node.

→˓These ports are again specified for each organization below
ambassadorPorts: # Any additional Ambassador ports can be given

→˓here, this is valid only if proxy='ambassador'
(continues on next page)

58 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

portRange: # For a range of ports
from: 15010
to: 15043

ports: 15020,15021 # For specific ports
loadBalancerSourceRanges: # (Optional) Default value is '0.0.0.0/0', this value

→˓can be changed to any other IP adres or list (comma-separated without spaces) of IP
→˓adresses, this is valid only if proxy='ambassador'

retry_count: 50 # Retry count for the checks
external_dns: enabled # Should be enabled if using external-dns for

→˓automatic route configuration

The fields under env section are

docker section contains the credentials of the repository where all the required images are built and stored.

The snapshot of the docker section with example values is below

Docker registry details where images are stored. This will be used to create k8s
→˓secrets
Please ensure all required images are built and stored in this registry.
Do not check-in docker_password.
docker:
url: "docker_url"
username: "docker_username"
password: "docker_password"

The fields under docker section are

config section contains the common configurations for the Hyperledger Besu network.

The snapshot of the config section with example values is below

config:
consensus: "ibft" # Options is "ibft" only
Certificate subject for the root CA of the network.
This is for development usage only where we create self-signed certificates

→˓and the truststores are generated automatically.
Production systems should generate proper certificates and configure

→˓truststores accordingly.
subject: "CN=DLT Root CA,OU=DLT,O=DLT,L=London,C=GB"
transaction_manager: "tessera" # Transaction manager can be "tessera" or "orion

→˓"; 21.x.x features are same for both
This is the version of transaction_manager docker image that will be deployed
Supported versions
orion: 1.6.0 (for besu 1.5.5)
orion/tessra: 21.1.1 (for besu 21.1.1)
tm_version: "21.1.1"
TLS can be True or False for the transaction manager
tm_tls: True
Tls trust value
tm_trust: "tofu" # Options are: "whitelist", "ca-or-tofu", "ca",

→˓"tofu"
File location for saving the genesis file should be provided.
genesis: "/home/user/blockchain-automation-framework/build/besu_genesis" #

→˓Location where genesis file will be saved
At least one Transaction Manager nodes public addresses should be provided.
- "https://node.test.besu.blockchaincloudpoc-develop.com:15022" for orion
- "https://node.test.besu.blockchaincloudpoc-develop.com" for tessera

(continues on next page)

5.4. Besu operations 59

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

The above domain name is formed by the (http or https)://(peer.name).(org.
→˓external_url_suffix):(ambassador tm_nodeport)

tm_nodes:
- "https://carrier.test.besu.blockchaincloudpoc-develop.com"

The fields under config are

The organizations section contains the specifications of each organization.

In the sample configuration example, we have four organization under the organizations section.

The snapshot of an organization field with sample values is below

organizations:
Specification for the 1st organization. Each organization maps to a VPC and a

→˓separate k8s cluster
- organization:

name: carrier
type: member
Provide the url suffix that will be added in DNS recordset. Must be different

→˓for different clusters
external_url_suffix: test.besu.blockchaincloudpoc.com
cloud_provider: aws # Options: aws, azure, gcp, minikube

Each organization under the organizations section has the following fields.

For the aws and k8s field the snapshot with sample values is below

aws:
access_key: "<aws_access_key>" # AWS Access key, only used when cloud_

→˓provider=aws
secret_key: "<aws_secret>" # AWS Secret key, only used when cloud_

→˓provider=aws
region: "<aws_region>" # AWS Region where cluster and EIPs are

→˓created
Kubernetes cluster deployment variables.
k8s:

context: "<cluster_context>"
config_file: "<path_to_k8s_config_file>"

The aws field under each organization contains: (This will be ignored if cloud_provider is not aws)

The k8s field under each organization contains

For gitops fields the snapshot from the sample configuration file with the example values is below

Git Repo details which will be used by GitOps/Flux.
gitops:

git_protocol: "https" # Option for git over https or ssh
git_url: "https://github.com/<username>/blockchain-automation-framework.git"

→˓# Gitops htpps or ssh url for flux value files
branch: "<branch_name>" #

→˓Git branch where release is being made
release_dir: "platforms/hyperledger-besu/releases/dev" # Relative Path in the

→˓Git repo for flux sync per environment.
chart_source: "platforms/hyperledger-besu/charts" # Relative Path where

→˓the Helm charts are stored in Git repo
git_repo: "github.com/<username>/blockchain-automation-framework.git" #

→˓without https://
(continues on next page)

60 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

username: "<username>" # Git Service user who has rights to check-in
→˓in all branches

password: "<password>" # Git Server user password/personal token
→˓(Optional for ssh; Required for https)

email: "<git_email>" # Email to use in git config
private_key: "<path to gitops private key>" # Path to private key (Optional

→˓for https; Required for ssh)

The gitops field under each organization contains

The services field for each organization under organizations section of Hyperledger Besu contains list of
services which could be peers or validators.

Each organization with type as member will have a peers service. The snapshot of peers service with example values
is below

peers:
- peer:
name: carrier
subject: "O=Carrier,OU=Carrier,L=51.50/-0.13/London,C=GB" # This is the

→˓node subject. L=lat/long is mandatory for supplychain sample app
geth_passphrase: "12345" # Passphrase to be used to generate geth account
lock: true # (for future use) Sets Besu node to lock or unlock mode.

→˓Can be true or false
p2p:
port: 30303
ambassador: 15010 #Port exposed on ambassador service (use one port

→˓per org if using single cluster)
rpc:
port: 8545
ambassador: 15011 #Port exposed on ambassador service (use one port

→˓per org if using single cluster)
ws:
port: 8546

db:
port: 3306 # Only applicable for tessra where mysql db is used

tm_nodeport:
port: 8888
ambassador: 15013 # Port exposed on ambassador service (Transaction

→˓manager node port)
tm_clientport:
port: 8080

The fields under peer service are

The peer in an organization with type as member can be used to deploy the smarcontracts with additional field peer.
smart_contract. The snapshot of peers service with example values is below

peers:
- peer:
name: carrier
subject: "O=Carrier,OU=Carrier,L=51.50/-0.13/London,C=GB" # This is the

→˓node subject. L=lat/long is mandatory for supplychain sample app
geth_passphrase: "12345" # Passphrase to be used to generate geth account
p2p:
port: 30303
ambassador: 15010 #Port exposed on ambassador service (use one port

→˓per org if using single cluster)
(continues on next page)

5.4. Besu operations 61

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

rpc:
port: 8545
ambassador: 15011 #Port exposed on ambassador service (use one port

→˓per org if using single cluster)
ws:
port: 8546

tm_nodeport:
port: 8888
ambassador: 15013 # Port exposed on ambassador service (Transaction

→˓manager node port)
tm_clientport:
port: 8080

geth_url: "http://manufacturerl.test.besu.blockchaincloudpoc.com:15011" #
→˓geth url of the node

smartcontract to be deployed only from one node (should not be repeated
→˓in other nodes)

smart_contract:
name: "General" # Name of the smart contract or Name of the

→˓main Smart contract Class
deployjs_path: "examples/supplychain-app/besu/smartContracts" # location

→˓of folder containing deployment script from BAF directory
contract_path: "../../besu/smartContracts/contracts" # Path of the

→˓smart contract folder relative to deployjs_path
iterations: 200 # Number of Iteration of execution to which the

→˓gas and the code is optimised
entrypoint: "General.sol" # Main entrypoint solidity file of the contract
private_for: "hPFajDXpdKzhgGdurWIrDxOimWFbcJOajaD3mJJVrxQ=,

→˓7aOvXjjkajr6gJm5mdHPhAuUANPXZhJmpYM5rDdS5nk=" # Orion Public keys for the
→˓privateFor

The additional fields under peer service are

Each organization with type as validator will have a validator service. The snapshot of validator service with
example values is below

validators:
- validator:
name: validator1
bootnode: true # true if the validator node is used also a

→˓bootnode for the network
p2p:
port: 30303
ambassador: 15010 #Port exposed on ambassador service (use one port

→˓per org if using single cluster)
rpc:
port: 8545
ambassador: 15011 #Port exposed on ambassador service (use one port

→˓per org if using single cluster)
ws:
port: 8546

The fields under validator service are

*** feature is in future scope

62 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

5.4.2 Adding a new node in Besu

• Prerequisites

• Create Configuration File

• Run playbook

Prerequisites

To add a new organization in Besu, an existing besu network should be running, enode information of all existing nodes
present in the network should be available, genesis file should be available in base64 encoding and the information of
orion nodes should be available and new node account should be unlocked prior adding the new node to the existing
besu network.

NOTE: Addition of a new organization has been tested on an existing network which is created by BAF. Networks
created using other methods may be suitable but this has not been tested by BAF team.

NOTE: The guide is only for the addition of non-validator organization in existing besu network.

Create Configuration File

Refer this guide for details on editing the configuration file.

The network.yaml file should contain the specific network.organization details along with the enode in-
formation, genesis file in base64 encoding and orion transaction manager details

NOTE: Make sure that the genesis flie is provided in base64 encoding. Also, if you are adding node to the same
cluster as of another node, make sure that you add the ambassador ports of the existing node present in the cluster to
the network.yaml

For reference, sample network.yaml file looks like below for IBFT consensus (but always check the latest network-
besu-newnode.yaml at platforms/hyperledger-besu/configuration/samples):

This is a sample configuration file for Hyperledger Besu network which has 4 nodes.
All text values are case-sensitive
network:

Network level configuration specifies the attributes required for each
→˓organization
to join an existing network.
type: besu
version: 1.5.5 #this is the version of Besu docker image that will be deployed.

#Environment section for Kubernetes setup
env:
type: "dev" # tag for the environment. Important to run multiple

→˓flux on single cluster

(continues on next page)

5.4. Besu operations 63

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

proxy: ambassador # value has to be 'ambassador' as 'haproxy' has
→˓not been implemented for besu

Any additional Ambassador ports can be given below, this is valid only if
→˓proxy='ambassador'

These ports are enabled per cluster, so if you have multiple clusters you do
→˓not need so many ports

This sample uses a single cluster, so we have to open 4 ports for each Node.
→˓These ports are again specified for each organization below

ambassadorPorts:
portRange: # For a range of ports
from: 15010
to: 15043

ports: 15020,15021 # For specific ports
retry_count: 20 # Retry count for the checks on Kubernetes cluster
external_dns: enabled # Should be enabled if using external-dns for

→˓automatic route configuration

Docker registry details where images are stored. This will be used to create k8s
→˓secrets
Please ensure all required images are built and stored in this registry.
Do not check-in docker_password.
docker:
url: "index.docker.io/hyperledgerlabs"
username: "docker_username"
password: "docker_password"

Following are the configurations for the common Besu network
config:
consensus: "ibft" # Options are "ibft". "ethash" and "clique"

→˓will be implemented in future release
Certificate subject for the root CA of the network.
This is for development usage only where we create self-signed certificates

→˓and the truststores are generated automatically.
Production systems should generate proper certificates and configure

→˓truststores accordingly.
subject: "CN=DLT Root CA,OU=DLT,O=DLT,L=London,C=GB"
transaction_manager: "orion" # Transaction manager is "orion"
This is the version of "orion" docker image that will be deployed
tm_version: "1.6.0"
TLS can be True or False for the orion tm
tm_tls: True
Tls trust value
tm_trust: "ca-or-tofu" # Options are: "whitelist", "ca-or-tofu",

→˓"ca", "tofu"
File location for saving the genesis file should be provided.
genesis: "/home/user/blockchain-automation-framework/build/besu_genesis" #

→˓Location where genesis file will be fetched
Transaction Manager nodes public addresses should be provided.
- "https://node.test.besu.blockchain-develop.com:15013"
The above domain name is formed by the (http or https)://(peer.name).(org.

→˓external_url_suffix):(ambassador orion node port)
tm_nodes:

- "https://carrier.test.besu.blockchaincloudpoc-develop.com:15013"
- "https://manufacturer.test.besu.blockchaincloudpoc-develop.com:15023"
- "https://store.test.besu.blockchaincloudpoc-develop.com:15033"
- "https://warehouse.test.besu.blockchaincloudpoc-develop.com:15043"

Besu rpc public address list for existing validator and member nodes
(continues on next page)

64 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

- "http://node.test.besu.blockchaincloudpoc-develop.com:15011"
The above domain name is formed by the (http)://(peer.name).(org.external_url_

→˓suffix):(ambassador node rpc port)
besu_nodes:

- "http://validator.test.besu.blockchaincloudpoc-develop.com:15051"
- "http://carrier.test.besu.blockchaincloudpoc-develop.com:15011"
- "http://manufacturer.test.besu.blockchaincloudpoc-develop.com:15021"
- "http://store.test.besu.blockchaincloudpoc-develop.com:15031"

Allows specification of one or many organizations that will be connecting to a
→˓network.
organizations:
Specification for the 1st organization. Each organization should map to a VPC

→˓and a separate k8s cluster for production deployments
- organization:

name: neworg
type: member
Provide the url suffix that will be added in DNS recordset. Must be different

→˓for different clusters
This is not used for Besu as Besu does not support DNS hostnames currently.

→˓Here for future use
external_url_suffix: test.besu.blockchaincloudpoc.com
cloud_provider: aws # Options: aws, azure, gcp
aws:

access_key: "aws_access_key" # AWS Access key, only used when cloud_
→˓provider=aws

secret_key: "aws_secret_key" # AWS Secret key, only used when cloud_
→˓provider=aws

region: "aws_region" # AWS Region where cluster and EIPs are
→˓created

Kubernetes cluster deployment variables. The config file path and name has to
→˓be provided in case

the cluster has already been created.
k8s:

context: "cluster_context"
config_file: "cluster_config"

Hashicorp Vault server address and root-token. Vault should be unsealed.
Do not check-in root_token
vault:

url: "vault_addr"
root_token: "vault_root_token"

Git Repo details which will be used by GitOps/Flux.
Do not check-in git_access_token
gitops:

git_protocol: "https" # Option for git over https or ssh
git_url: "https://github.com/<username>/blockchain-automation-framework.git"

→˓ # Gitops https or ssh url for flux value files
branch: "develop" # Git branch where release is being made
release_dir: "platforms/hyperledger-besu/releases/dev" # Relative Path in the

→˓Git repo for flux sync per environment.
chart_source: "platforms/hyperledger-besu/charts" # Relative Path where

→˓the Helm charts are stored in Git repo
git_repo: "github.com/<username>/blockchain-automation-framework.git" #

→˓Gitops git repository URL for git push
username: "git_username" # Git Service user who has rights to check-

→˓in in all branches
password: "git_access_token" # Git Server user access token (Optional

→˓for ssh; Required for https) (continues on next page)

5.4. Besu operations 65

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

email: "git_email" # Email to use in git config
private_key: "path_to_private_key" # Path to private key file which

→˓has write-access to the git repo (Optional for https; Required for ssh)
The participating nodes are named as peers
services:

peers:
- peer:
name: newOrg
subject: "O=Neworg,OU=Neworg,L=51.50/-0.13/London,C=GB" # This is the node

→˓subject. L=lat/long is mandatory for supplychain sample app
geth_passphrase: 12345 # Passphrase to be used to generate geth account
lock: false # Sets Besu node to lock or unlock mode. Can be true or

→˓false
p2p:
port: 30303
ambassador: 15020 #Port exposed on ambassador service (use one port

→˓per org if using single cluster)
rpc:
port: 8545
ambassador: 15021 #Port exposed on ambassador service (use one port

→˓per org if using single cluster)
ws:
port: 8546

tm_nodeport:
port: 15022 # Port exposed on ambassador service must be same
ambassador: 15022

tm_clientport:
port: 8888

Three new sections are added to the network.yaml

Run playbook

The site.yaml playbook is used to add a new organization to the existing network. This can be done using the following
command

ansible-playbook platforms/shared/configuration/site.yaml --extra-vars "@path-to-
→˓network.yaml" --extra-vars "add_new_org=True"

5.5 Indy operations

5.5.1 Configuration file specification: Indy

A network.yaml file is the base configuration file for setting up a Indy network. This file contains
all the information related to the infrastructure and network specifications. Here is the structure of it.

66 Chapter 5. Operations Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/site.yaml

Blockchain Automation Framework Documentation, Release 0.4.0

Before setting up a Indy network, this file needs to be updated with the required specifications. A sample con-
figuration file is provide in the repo path:platforms/hyperledger-indy/configuration/samples/
network-indyv3.yaml

A json-schema definition is provided in platforms/network-schema.json to assist with semantic validations
and lints. You can use your favorite yaml lint plugin compatible with json-schema specification, like redhat.
vscode-yaml for VSCode. You need to adjust the directive in template located in the first line based on your actual
build directory:

yaml-language-server: $schema=../platforms/network-schema.json

The configurations are grouped in the following sections for better understanding.

• type

• version

• env

• docker

• name

• genesis

• organizations

Here is the snapshot from the sample configuration file

5.5. Indy operations 67

Blockchain Automation Framework Documentation, Release 0.4.0

The sections in the sample configuration file are

type defines the platform choice like corda/fabric/indy, here in example its Indy

version defines the version of platform being used, here in example the Indy version is 1.9.2.

env section contains the environment type and additional configuration. Value for proxy field under this section has
to be ‘ambassador’ as ‘haproxy’ has not been implemented for Indy.

The snapshot of the env section with example values is below

env:
type: "env_type" # tag for the environment. Important to run

→˓multiple flux on single cluster
proxy: ambassador # value has to be 'ambassador' as 'haproxy' has

→˓not been implemented for Indy
Must be different from all steward ambassador ports specified in the rest of

→˓this network yaml
ambassadorPorts: # Any additional Ambassador ports can be given

→˓here, this is valid only if proxy='ambassador'
portRange: # For a range of ports
from: 15010
to: 15043
ports: 15010,15023,15024,15033,15034,15043,15044 # Indy does not use a port

→˓range as it creates an NLB, and only necessary ports should be opened
loadBalancerSourceRanges: # (Optional) Default value is '0.0.0.0/0', this value

→˓can be changed to any other IP adres or list (comma-separated without spaces) of IP
→˓adresses, this is valid only if proxy='ambassador'

retry_count: 20 # Retry count for the checks
external_dns: disabled # Should be enabled if using external-dns for

→˓automatic route configuration (continues on next page)

68 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

The fields under env section are

docker section contains the credentials of the repository where all the required images are built and stored.

The snapshot of the docker section with example values is below

Docker registry details where images are stored. This will be used to create k8s
→˓secrets
Please ensure all required images are built and stored in this registry.
Do not check-in docker_password.
docker:
url: "docker_url"
username: "docker_username"
password: "docker_password"

The fields under docker section are

NOTE: Please follow these instructions to build and store the docker images before running the Ansible playbooks.

name is used as the Indy network name (has impact e.g. on paths where the Indy nodes look for crypto files on their
local filesystem)

The snapshot of the genesis section with example values is below

Information about pool transaction genesis and domain transactions genesis
genesis:
state: absent
pool: genesis/pool_transactions_genesis
domain: domain/domain_transactions_genesis

The genesis section contains Information about pool transaction genesis and domain transactions genesis.
genesis contains the following fields:

The organizations section allows specification of one or many organizations that will be connecting to a network.
If an organization is also hosting the root of the network (e.g. membership service, etc), then these services should be
listed in this section as well.

The snapshot of an organization field with sample values is below

- organization:
name: authority
type: peer
external_url_suffix: indy.blockchaincloudpoc.com # Provide the external dns

→˓suffix. Only used when Indy webserver/Clients are deployed.
cloud_provider: aws # Values can be 'aws-baremetal', 'aws' or

→˓'minikube'

Each organization under the organizations section has the following fields.

For the aws and k8s field the snapshot with sample values is below

aws:
access_key: "aws_access_key" # AWS Access key
secret_key: "aws_secret_key" # AWS Secret key

(continues on next page)

5.5. Indy operations 69

../operations/configure_prerequisites.html#docker

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

encryption_key: "encryption_key_id" # AWS encryption key. If present, it
→˓'s used as the KMS key id for K8S storage class encryption.

zone: "availability_zone" # AWS availability zone
region: "region" # AWS region

publicIps: ["1.1.1.1","2.2.2.2"] # List of all public
→˓IP addresses of each availability zone

Kubernetes cluster deployment variables. The config file path has to be
→˓provided in case

the cluster has already been created.
k8s:

config_file: "cluster_config"
context: "kubernetes-admin@kubernetes"

The aws field under each organisation contains: (This will be ignored if cloud_provider is not ‘aws’)

The publicIps field under each organisation contains:

NOTE: Network.yaml file consists of more organizations, where each organization can be under different availability
zone. It means, that each organization has different IP. The field publicIps holds list of all IPs of all organizations
in the same cluster. This should be in JSON Array format like [”1.1.1.1”,”2.2.2.2”] and must contain different IP for
each availability zone on the K8s cluster i.e. If the K8s cluster is in two AZ, then two IP addresses should be provided
here.

The k8s field under each organisation contains

For the vault field the snapshot with sample values is below

Hashicorp Vault server address and root-token. Vault should be unsealed.
Do not check-in root_token
vault:
url: "vault_addr"
root_token: "vault_root_token"

The vault field under each organisation contains:

For gitops fields the snapshot from the sample configuration file with the example values is below

Git Repo details which will be used by GitOps/Flux.
Do not check-in git_password
gitops:

git_protocol: "https" # Option for git over https or ssh
git_url: "gitops_ssh_url" # Gitops https or ssh url for

→˓flux value files like "https://github.com/hyperledger-labs/blockchain-automation-
→˓framework.git"

branch: "gitops_branch" # Git branch where release is
→˓being made

release_dir: "gitops_release_dir" # Relative Path in the Git repo
→˓for flux sync per environment.

chart_source: "gitops_charts" # Relative Path where the Helm
→˓charts are stored in Git repo

git_repo: "gitops_repo_url" # Gitops git repository URL for git
→˓push like "github.com/hyperledger-labs/blockchain-automation-framework.git"

username: "git_username" # Git Service user who has rights
→˓to check-in in all branches

password: "git_password" # Git Server user password/ user
→˓token (Optional for ssh; Required for https)

(continues on next page)

70 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

email: "git_email" # Email to use in git config
private_key: "path_to_private_key" # Path to private key file which

→˓has write-access to the git repo (Optional for https; Required for ssh)

The gitops field under each organization contains

The services field for each organization under organizations section of Indy contains list of services which
could be trustee/steward/endorser

The snapshot of trustee service with example values is below

services:
trustees:
- trustee:
name: provider-trustee
genesis: true
server:
port: 8000
ambassador: 15010

The fields under trustee service are (find more about differences between trustee/steward/endorser here)

The snapshot of steward service example values is below

services:
stewards:
- steward:
name: provider-steward-1
type: VALIDATOR
genesis: true
publicIp: 3.221.78.194
node:
port: 9711
targetPort: 9711
ambassador: 9711 # Port for ambassador service

client:
port: 9712
targetPort: 9712
ambassador: 9712 # Port for ambassador service

The fields under steward service are

The snapshot of endorser service with example values is below

services:
endorsers:
- endorser:
name: provider-endorser
full_name: Some Decentralized Identity Mobile Services Provider
avatar: https://provider.com/avatar.png
public endpoint will be {{ endorser.name}}.{{ external_url_suffix}}:{

→˓{endorser.server.httpPort}}
E.g. In this sample https://provider-endorser.indy.blockchaincloudpoc.

→˓com:15020/
For minikube: http://<minikubeip>>:15020
server:
httpPort: 15020
apiPort: 15030

5.5. Indy operations 71

https://readthedocs.org/projects/indy-node/downloads/pdf/latest/

Blockchain Automation Framework Documentation, Release 0.4.0

The fields under endorser service are

5.5.2 Adding a new validator organization in Indy

• Prerequisites

• Create Configuration File

• Run playbook

Prerequisites

To add a new organization in Indy, an existing Indy network should be running, pool and domain genesis files should
be available.

NOTE: Addition of a new organization has been tested on an existing network which is created by BAF. Networks
created using other methods may be suitable but this has not been tested by BAF team.

NOTE: The guide is only for the addition of VALIDATOR Node in existing Indy network.

Create Configuration File

Refer this guide for details on editing the configuration file.

The network.yaml file should contain the specific network.organization details along with the genesis
information and genesis.add-org as true.

NOTE: If you are adding node to the same cluster as of another node, make sure that you add the ambassador ports of
the existing node present in the cluster to the network.yaml

For reference, sample network.yaml file looks like below (but always check the latest network-indy-newnode.yaml
at platforms/hyperledger-indy/configuration/samples):

This is a sample configuration file for hyperledger indy which can be reused for
→˓adding of new org with 2 validator nodes.
It has 2 organizations:
1. organization "university" with 1 trustee, 2 stewards and 1 endorser
2. organization "bank" with 1 trustee, 2 stewards and 1 endorser
It is MANDATORY to have once existing orgnization and once new organization as a
→˓Steward can add one and only one Validator Node

network:
Network level configuration specifies the attributes required for each

→˓organization
to join an existing network.
type: indy

(continues on next page)

72 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

version: 1.11.0 # Supported versions 1.11.0 and 1.12.1

#Environment section for Kubernetes setup
env:
type: indy # tag for the environment. Important to run multiple flux

→˓on single cluster
proxy: ambassador # value has to be 'ambassador' as 'haproxy' has

→˓not been implemented for Indy
Must be different from all other ports specified in the rest of this network

→˓yaml
ambassadorPorts: # Any additional Ambassador ports can be given

→˓here, this is valid only if proxy='ambassador'
ports: 15010,15023,15024,15025,15033,15034,15035,15043,15044,15045 # Each

→˓Client Agent uses 3 ports # Indy does not use a port range as it creates an NLB,
→˓and only necessary ports should be opened

loadBalancerSourceRanges: # (Optional) Default value is '0.0.0.0/0', this value
→˓can be changed to any other IP adres or list (comma-separated without spaces) of IP
→˓adresses, this is valid only if proxy='ambassador'

retry_count: 40 # Retry count for the checks
external_dns: enabled # Should be enabled if using external-dns for

→˓automatic route configuration

Docker registry details where images are stored. This will be used to create k8s
→˓secrets
Please ensure all required images are built and stored in this registry.
Do not check-in docker_password.
docker:
url: "index.docker.io/hyperledgerlabs"
username: "docker_username"
password: "docker_password"

It's used as the Indy network name (has impact e.g. on paths where the Indy nodes
→˓look for crypto files on their local filesystem)
name: baf

Information about pool transaction genesis and domain transactions genesis
All the fields below in the genesis section are MANDATORY
genesis:
add_org: true # Flag to denote that this will add new orgs to

→˓existing Indy network
state: present # must be present when add_org is true
pool: /path/to/pool_transactions_genesis # path where pool_transactions_

→˓genesis from existing network has been stored locally
domain: /path/to/domain_transactions_genesis # path where domain_transactions_

→˓genesis from existing has been stored locally

Allows specification of one or many organizations that will be connecting to a
→˓network.
organizations:
- organization:
name: university
type: peer
org_status: existing # Status of the organization for the existing network, can

→˓be new / existing
cloud_provider: aws
external_url_suffix: indy.blockchaincloudpoc.com # Provide the external dns

→˓suffix. Only used when Indy webserver/Clients are deployed.
(continues on next page)

5.5. Indy operations 73

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

aws:
access_key: "aws_access_key" # AWS Access key
secret_key: "aws_secret_key" # AWS Secret key
encryption_key: "encryption_key_id" # AWS encryption key. If present, it's

→˓used as the KMS key id for K8S storage class encryption.
zone: "availability_zone" # AWS availability zone
region: "region" # AWS region

publicIps: ["3.221.78.194"] # List of all public IP addresses of each
→˓availability zone from all organizations in the same k8s cluster

Kubernetes cluster deployment variables. The config file path has to be
→˓provided in case

the cluster has already been created.
k8s:

config_file: "/path/to/cluster_config"
context: "kubernetes-admin@kubernetes"

Hashicorp Vault server address and root-token. Vault should be unsealed.
Do not check-in root_token
vault:

url: "vault_addr"
root_token: "vault_root_token"
secret_path: "secret"

Git Repo details which will be used by GitOps/Flux.
Do not check-in git_access_token
gitops:

git_protocol: "https" # Option for git over https or ssh
git_url: "https://github.com/<username>/blockchain-automation-framework.git"

→˓ # Gitops https or ssh url for flux value files
branch: "develop" # Git branch where release is being made
release_dir: "platforms/hyperledger-indy/releases/dev" # Relative Path

→˓in the Git repo for flux sync per environment.
chart_source: "platforms/hyperledger-indy/charts" # Relative Path

→˓where the Helm charts are stored in Git repo
git_repo: "github.com/<username>/blockchain-automation-framework.git"

→˓# Gitops git repository URL for git push
username: "git_username" # Git Service user who has rights to

→˓check-in in all branches
password: "git_access_token" # Git Server user password
email: "git_email" # Email to use in git config
private_key: "path_to_private_key" # Path to private key file which has

→˓write-access to the git repo (Optional for https; Required for ssh)

Services maps to the pods that will be deployed on the k8s cluster
This sample has trustee, 2 stewards and endoorser
services:

trustees:
- trustee:

name: university-trustee
genesis: true

stewards:
- steward:

name: university-steward-1
type: VALIDATOR
genesis: true

(continues on next page)

74 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

publicIp: 3.221.78.194 # IP address of current organization in current
→˓availability zone

node:
port: 9731
targetPort: 9731
ambassador: 9731 # Port for ambassador service

client:
port: 9732
targetPort: 9732
ambassador: 9732 # Port for ambassador service

- steward:
name: university-steward-2
type: VALIDATOR
genesis: true
publicIp: 3.221.78.194 # IP address of current organization in current

→˓availability zone
node:
port: 9741
targetPort: 9741
ambassador: 9741 # Port for ambassador service

client:
port: 9742
targetPort: 9742
ambassador: 9742 # Port for ambassador service

endorsers:
- endorser:

name: university-endorser
full_name: Some Decentralized Identity Mobile Services Partner
avatar: http://university.com/avatar.png
public endpoint will be {{ endorser.name}}.{{ external_url_suffix}}:{

→˓{endorser.server.httpPort}}
Eg. In this sample http://university-endorser.indy.blockchaincloudpoc.

→˓com:15033/
For minikube: http://<minikubeip>>:15033
server:
httpPort: 15033
apiPort: 15034
webhookPort: 15035

- organization:
name: bank
type: peer
org_status: new # Status of the organization for the existing network, can be new

→˓/ existing
cloud_provider: aws
external_url_suffix: indy.blockchaincloudpoc.com # Provide the external dns

→˓suffix. Only used when Indy webserver/Clients are deployed.

aws:
access_key: "aws_access_key" # AWS Access key
secret_key: "aws_secret_key" # AWS Secret key
encryption_key: "encryption_key_id" # AWS encryption key. If present, it's

→˓used as the KMS key id for K8S storage class encryption.
zone: "availability_zone" # AWS availability zone
region: "region" # AWS region

publicIps: ["3.221.78.194"] # List of all public IP addresses of
→˓each availability zone from all organizations in the same k8s cluster
→˓ # List of all public IP addresses of each availability zone (continues on next page)

5.5. Indy operations 75

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

Kubernetes cluster deployment variables. The config file path has to be
→˓provided in case

the cluster has already been created.
k8s:

config_file: "/path/to/cluster_config"
context: "kubernetes-admin@kubernetes"

Hashicorp Vault server address and root-token. Vault should be unsealed.
Do not check-in root_token
vault:

url: "vault_addr"
root_token: "vault_root_token"

Git Repo details which will be used by GitOps/Flux.
Do not check-in git_access_token
gitops:

git_protocol: "https" # Option for git over https or ssh
git_url: "https://github.com/<username>/blockchain-automation-framework.git"

→˓ # Gitops https or ssh url for flux value files
branch: "develop" # Git branch where release is being made
release_dir: "platforms/hyperledger-indy/releases/dev" # Relative

→˓Path in the Git repo for flux sync per environment.
chart_source: "platforms/hyperledger-indy/charts" # Relative Path

→˓where the Helm charts are stored in Git repo
git_repo: "github.com/<username>/blockchain-automation-framework.git"

→˓ # Gitops git repository URL for git push
username: "git_username" # Git Service user who has rights

→˓to check-in in all branches
password: "git_access_token" # Git Server user password
email: "git_email" # Email to use in git config
private_key: "path_to_private_key" # Path to private key file which

→˓has write-access to the git repo (Optional for https; Required for ssh)

Services maps to the pods that will be deployed on the k8s cluster
This sample has trustee, 2 stewards and endoorser
services:

trustees:
- trustee:

name: bank-trustee
genesis: true

stewards:
- steward:

name: bank-steward-1
type: VALIDATOR
genesis: true
publicIp: 3.221.78.194 # IP address of current organization in current

→˓availability zone
node:
port: 9711
targetPort: 9711
ambassador: 9711 # Port for ambassador service

client:
port: 9712
targetPort: 9712
ambassador: 9712 # Port for ambassador service

- steward:
(continues on next page)

76 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

name: bank-steward-2
type: VALIDATOR
genesis: true
publicIp: 3.221.78.194 # IP address of current organization in current

→˓availability zone
node:
port: 9721
targetPort: 9721
ambassador: 9721 # Port for ambassador service

client:
port: 9722
targetPort: 9722
ambassador: 9722 # Port for ambassador service

endorsers:
- endorser:

name: bank-endorser
full_name: Some Decentralized Identity Mobile Services Provider
avatar: http://bank.com/avatar.png

Following items must be added/updated to the network.yaml used to add new organizations

Also, ensure that organization.org_status is set to existing for existing org and new for new org.

Run playbook

The add-new-organization.yaml playbook is used to add a new organization to the existing network. This can be done
using the following command

ansible-playbook platforms/shared/configuration/add-new-organization.yaml --extra-
→˓vars "@path-to-network.yaml"

5.6 Quorum operations

5.6.1 Configuration file specification: Quorum

A network.yaml file is the base configuration file designed in the Blockchain Automa-
tion Framework for setting up a Quorum DLT network. This file contains all the con-
figurations related to the network that has to be deployed. Below shows its structure.

5.6. Quorum operations 77

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/add-new-organization.yaml

Blockchain Automation Framework Documentation, Release 0.4.0

Before setting up a Quorum DLT/Blockchain network, this file needs to be updated with the required specifications.

A sample configuration file is provided in the repo path:platforms/quorum/configuration/samples/
network-quorum.yaml

The configurations are grouped in the following sections for better understanding.

• type

• version

• env

• docker

• config

• organizations

Here is the snapshot from the sample configuration file

78 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

The sections in the sample configuration file are

type defines the platform choice like corda/fabric/indy/quorum, here in the example its quorum.

version defines the version of platform being used. The current Quorum version support is only for 21.4.2

NOTE: Use Quorum Version 21.4.2 if you are deploying Supplychain smartcontracts from examples.

env section contains the environment type and additional (other than 8443) Ambassador port configuration. Vaule for
proxy field under this section can be ‘ambassador’ or ‘haproxy’

The snapshot of the env section with example value is below

env:
type: "env-type" # tag for the environment. Important to run

→˓multiple flux on single cluster
proxy: ambassador # value has to be 'ambassador' as 'haproxy' has

→˓not been implemented for Quorum
These ports are enabled per cluster, so if you have multiple clusters you do

→˓not need so many ports
This sample uses a single cluster, so we have to open 4 ports for each Node.

→˓These ports are again specified for each organization below
ambassadorPorts: # Any additional Ambassador ports can be given

→˓here, this is valid only if proxy='ambassador'
portRange: # For a range of ports
from: 15010
to: 15043

ports: 15020,15021 # For specific ports
loadBalancerSourceRanges: 0.0.0.0/0 # Default value is '0.0.0.0/0', this value

→˓can be changed to any other IP adres or list (comma-separated without spaces) of IP
→˓adresses, this is valid only if proxy='ambassador'

(continues on next page)

5.6. Quorum operations 79

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

retry_count: 50 # Retry count for the checks
external_dns: enabled # Should be enabled if using external-dns for

→˓automatic route configuration

The fields under env section are

docker section contains the credentials of the repository where all the required images are built and stored.

The snapshot of the docker section with example values is below

Docker registry details where images are stored. This will be used to create k8s
→˓secrets
Please ensure all required images are built and stored in this registry.
Do not check-in docker_password.
docker:
url: "docker_url"
username: "docker_username"
password: "docker_password"

The fields under docker section are

config section contains the common configurations for the Quorum network.

The snapshot of the config section with example values is below

config:
consensus: "raft" # Options are "raft" and "ibft"
Certificate subject for the root CA of the network.
This is for development usage only where we create self-signed certificates

→˓and the truststores are generated automatically.
Production systems should generate proper certificates and configure

→˓truststores accordingly.
subject: "CN=DLT Root CA,OU=DLT,O=DLT,L=London,C=GB"
transaction_manager: "tessera" # Options are "tessera" and "constellation"
This is the version of "tessera" or "constellation" docker image that will be

→˓deployed
Supported versions
constellation: 0.3.2 (For all versions of quorum)
tm_version: "21.4.0" # This is the version of "tessera" and

→˓"constellation" docker image that will be deployed
tm_tls: "strict" # Options are "strict" and "off"
tm_trust: "tofu" # Options are: "whitelist", "ca-or-tofu", "ca",

→˓"tofu"
Transaction Manager nodes public addresses should be provided.
For "tessera", all participating nodes should be provided
For "constellation", only one is bootnode should be provided
#
For constellation, use following. This will be the bootnode for all nodes
- "http://carrier.test.quorum.blockchaincloudpoc.com:15012/" #NOTE the end /

→˓is necessary and should not be missed
The above domain name is formed by the http://(peer.name).(org.external_url_

→˓suffix):(ambassador constellation port)/
In the example (for tessera) below, the domain name is formed by the https://

→˓(peer.name).(org.external_url_suffix):(ambassador default port)
tm_nodes:

- "https://carrier.test.quorum.blockchaincloudpoc.com:8443"
- "https://manufacturer.test.quorum.blockchaincloudpoc.com:8443"
- "https://store.test.quorum.blockchaincloudpoc.com:8443"

(continues on next page)

80 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

- "https://warehouse.test.quorum.blockchaincloudpoc.com:8443"
staticnodes: "/home/user/blockchain-automation-framework/build/quorum_staticnodes

→˓" # Location where staticnodes will be saved
genesis: "/home/user/blockchain-automation-framework/build/quorum_genesis" #

→˓Location where genesis file will be saved
NOTE for the above paths, the directories should exist
Following keys are only used when adding new Node(s) to existing network

→˓and should NOT be used to create new network.
bootnode:

#name of the bootnode that matches one from existing node
name: carrier
#ambassador url of the bootnode
url: carrier.test.quorum.blockchaincloudpoc.com
#rpc port of the bootnode
rpcport: 15011
#id of the bootnode
nodeid: 1

The fields under config are

The organizations section contains the specifications of each organization.

In the sample configuration example, we have four organization under the organizations section.

The snapshot of an organization field with sample values is below

organizations:
Specification for the 1st organization. Each organization maps to a VPC and a

→˓separate k8s cluster
- organization:

name: carrier
external_url_suffix: test.quorum.blockchaincloudpoc.com # This is the url

→˓suffix that will be added in DNS recordset. Must be different for different clusters
cloud_provider: aws # Options: aws, azure, gcp, minikube

Each organization under the organizations section has the following fields.

For the aws and k8s field the snapshot with sample values is below

aws:
access_key: "<aws_access_key>" # AWS Access key, only used when cloud_

→˓provider=aws
secret_key: "<aws_secret>" # AWS Secret key, only used when cloud_

→˓provider=aws

Kubernetes cluster deployment variables.
k8s:

context: "<cluster_context>"
config_file: "<path_to_k8s_config_file>"

The aws field under each organization contains: (This will be ignored if cloud_provider is not aws)

The k8s field under each organization contains

For gitops fields the snapshot from the sample configuration file with the example values is below

Git Repo details which will be used by GitOps/Flux.
gitops:

git_protocol: "https" # Option for git over https or ssh
(continues on next page)

5.6. Quorum operations 81

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

git_url: "https://github.com/<username>/blockchain-automation-framework.git"
→˓# Gitops htpps or ssh url for flux value files

branch: "<branch_name>" #
→˓Git branch where release is being made

release_dir: "platforms/Quorum/releases/dev" # Relative Path in the Git repo
→˓for flux sync per environment.

chart_source: "platforms/Quorum/charts" # Relative Path where the Helm
→˓charts are stored in Git repo

git_repo: "github.com/<username>/blockchain-automation-framework.git" #
→˓without https://

username: "<username>" # Git Service user who has rights to check-in
→˓in all branches

password: "<password>" # Git Server user password/personal token
→˓(Optional for ssh; Required for https)

email: "<git_email>" # Email to use in git config
private_key: "<path to gitops private key>" # Path to private key (Optional

→˓for https; Required for ssh)

The gitops field under each organization contains

The services field for each organization under organizations section of Quorum contains list of services
which could be only peers as of now.

Each organization with type as peer will have a peers service. The snapshot of peers service with example values is
below

peers:
- peer:
name: carrier
subject: "O=Carrier,OU=Carrier,L=51.50/-0.13/London,C=GB" # This is the

→˓node subject. L=lat/long is mandatory for supplychain sample app
type: validator # value can be validator or non-validator, only

→˓applicable if consensus = 'ibft'
geth_passphrase: 12345 # Passphrase to be used to generate geth account
p2p:
port: 21000
ambassador: 15010 #Port exposed on ambassador service (use one port

→˓per org if using single cluster)
rpc:
port: 8546
ambassador: 15011 #Port exposed on ambassador service (use one port

→˓per org if using single cluster)
transaction_manager:
port: 8443 # use port: 9001 when transaction_manager =

→˓"constellation"
ambassador: 8443 # use ambassador: 15012 when transaction_manager =

→˓"constellation"
raft: # Only used if consensus = 'raft'
port: 50401
ambassador: 15013

db: # Only used if transaction_manager = "tessera"
port: 3306

The fields under peer service are

*** feature is in future scope

82 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

5.6.2 Adding a new node in Quorum

• Prerequisites

• Create Configuration File

• Run playbook

Prerequisites

To add a new organization in Quorum, an existing quorum network should be running, enode information of all existing
nodes present in the network should be available, genesis block should be available in base64 encoding and the geth
information of a node should be available and that node account should be unlocked prior adding the new node to the
existing quorum network.

NOTE: Addition of a new organization has been tested on an existing network which is created by BAF. Networks
created using other methods may be suitable but this has not been tested by BAF team.

Create Configuration File

Refer this guide for details on editing the configuration file.

The network.yaml file should contain the specific network.organization details along with the enode in-
formation, genesis block in base64 encoding and geth account details

NOTE: Make sure that the genesis block information is given in base64 encoding. Also, if you are adding node to
the same cluster as of another node, make sure that you add the ambassador ports of the existing node present in the
cluster to the network.yaml

For reference, sample network.yaml file looks like below for RAFT consensus (but always check the latest
network-quorum-newnode.yaml at platforms/quourm/configuration/samples):

This is a sample configuration file for Quorum network which has 4 nodes.
All text values are case-sensitive
network:

Network level configuration specifies the attributes required for each
→˓organization
to join an existing network.
type: quorum
version: 21.4.2 #this is the version of Quorum docker image that will be deployed.

→˓older version 2.1.1 is not compatible with supplychain contracts

#Environment section for Kubernetes setup
env:
type: "dev" # tag for the environment. Important to run multiple

→˓flux on single cluster
proxy: ambassador # value has to be 'ambassador' as 'haproxy' has

→˓not been implemented for Quorum
These ports are enabled per cluster, so if you have multiple clusters you do

→˓not need so many ports

(continues on next page)

5.6. Quorum operations 83

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

This sample uses a single cluster, so we have to open 4 ports for each Node.
→˓These ports are again specified for each organization below

ambassadorPorts: # Any additional Ambassador ports can be given
→˓here, this is valid only if proxy='ambassador'

portRange: # For a range of ports
from: 15010
to: 15043

ports: 15020,15021 # For specific ports
retry_count: 20 # Retry count for the checks on Kubernetes cluster
external_dns: enabled # Should be enabled if using external-dns for

→˓automatic route configuration

Docker registry details where images are stored. This will be used to create k8s
→˓secrets
Please ensure all required images are built and stored in this registry.
Do not check-in docker_password.
docker:
url: "index.docker.io/hyperledgerlabs"
username: "docker_username"
password: "docker_password"

Following are the configurations for the common Quorum network
config:
consensus: "raft" # Options are "raft" and "ibft"
Certificate subject for the root CA of the network.
This is for development usage only where we create self-signed certificates

→˓and the truststores are generated automatically.
Production systems should generate proper certificates and configure

→˓truststores accordingly.
subject: "CN=DLT Root CA,OU=DLT,O=DLT,L=London,C=GB"
transaction_manager: "tessera" # Options are "tessera" and "constellation"
This is the version of "tessera" or "constellation" docker image that will be

→˓deployed
Supported versions
constellation: 0.3.2 (For all versions of quorum)
tm_version: "21.4.0"
tm_tls: "strict" # Options are "strict" and "off"
tm_trust: "tofu" # Options are: "whitelist", "ca-or-tofu", "ca",

→˓"tofu"
Transaction Manager nodes public addresses should be provided.
For "tessera", all participating nodes should be provided
For "constellation", only one is bootnode should be provided
#
For constellation, use following. This will be the bootnode for all nodes
- "http://carrier.test.quorum.blockchaincloudpoc.com:15012/" #NOTE the end /

→˓is necessary and should not be missed
The above domain name is formed by the http://(peer.name).(org.external_url_

→˓suffix):(ambassador constellation port)/
In the example (for tessera) below, the domain name is formed by the https://

→˓(peer.name).(org.external_url_suffix):(ambassador default port)
tm_nodes:

- "https://carrier.test.quorum.blockchaincloudpoc.com:8443"
- "https://manufacturer.test.quorum.blockchaincloudpoc.com:8443"
- "https://store.test.quorum.blockchaincloudpoc.com:8443"
- "https://warehouse.test.quorum.blockchaincloudpoc.com:8443"

Following keys are used only to add new Node(s) to existing network.
staticnodes: # Existing network's static nodes file path needs to

→˓be given (continues on next page)

84 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

genesis: # Existing network's genesis.json file path needs to
→˓be given

make sure that the account is unlocked prior to adding a new node
bootnode:

#name of the node
name: carrier
#ambassador url of the node
url: carrier.test.quorum.blockchaincloudpoc.com
#rpc port of the node
rpcport: 15011
#id of the node.
nodeid: 1

Allows specification of one or many organizations that will be connecting to a
→˓network.
organizations:
Specification for the 1st organization. Each organization should map to a VPC

→˓and a separate k8s cluster for production deployments
- organization:

name: neworg
external_url_suffix: test.quorum.blockchaincloudpoc.com # This is the url

→˓suffix that will be added in DNS recordset. Must be different for different clusters
cloud_provider: aws # Options: aws, azure, gcp
aws:

access_key: "aws_access_key" # AWS Access key, only used when cloud_
→˓provider=aws

secret_key: "aws_secret_key" # AWS Secret key, only used when cloud_
→˓provider=aws

Kubernetes cluster deployment variables. The config file path and name has to
→˓be provided in case

the cluster has already been created.
k8s:

context: "cluster_context"
config_file: "cluster_config"

Hashicorp Vault server address and root-token. Vault should be unsealed.
Do not check-in root_token
vault:

url: "vault_addr"
root_token: "vault_root_token"

Git Repo details which will be used by GitOps/Flux.
Do not check-in git_access_token
gitops:

git_protocol: "https" # Option for git over https or ssh
git_url: "https://github.com/<username>/blockchain-automation-framework.git"

→˓ # Gitops https or ssh url for flux value files
branch: "develop" # Git branch where release is being made
release_dir: "platforms/quorum/releases/dev" # Relative Path in the Git repo

→˓for flux sync per environment.
chart_source: "platforms/quorum/charts" # Relative Path where the Helm

→˓charts are stored in Git repo
git_repo: "github.com/<username>/blockchain-automation-framework.git" #

→˓Gitops git repository URL for git push
username: "git_username" # Git Service user who has rights to check-

→˓in in all branches
password: "git_access_token" # Git Server user access token (Optional

→˓for ssh; Required for https)
email: "git_email" # Email to use in git config

(continues on next page)

5.6. Quorum operations 85

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

private_key: "path_to_private_key" # Path to private key file which
→˓has write-access to the git repo (Optional for https; Required for ssh)

The participating nodes are named as peers
services:

peers:
- peer:
name: neworg
subject: "O=Neworg,OU=Neworg,L=51.50/-0.13/London,C=GB" # This is the node

→˓subject. L=lat/long is mandatory for supplychain sample app
type: validator # value can be validator or non-validator, only

→˓applicable if consensus = 'ibft'
geth_passphrase: 12345 # Passphrase to be used to generate geth account
p2p:
port: 21000
ambassador: 15010 #Port exposed on ambassador service (use one port

→˓per org if using single cluster)
rpc:
port: 8546
ambassador: 15011 #Port exposed on ambassador service (use one port

→˓per org if using single cluster)
transaction_manager:
port: 8443 # use port: 9001 when transaction_manager =

→˓"constellation"
ambassador: 8443 # use ambassador: 15012 when transaction_manager =

→˓"constellation"
raft: # Only used if consensus = 'raft'
port: 50401
ambassador: 15013

db: # Only used if transaction_manager = "tessera"
port: 3306

Below three new sections are added to the network.yaml

The network.config.bootnode field contains:

Run playbook

The site.yaml playbook is used to add a new organization to the existing network. This can be done using the following
command

ansible-playbook platforms/shared/configuration/site.yaml --extra-vars "@path-to-
→˓network.yaml"

5.7 Generic operations

5.7.1 Setting up a DLT/Blockchain network

Pre-requisites

To create a Production DLT/Blockchain network, ensure you have the following:

1. One running Kubernetes Cluster and the Config file (kubeconfig.yaml) per Organization.

86 Chapter 5. Operations Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/site.yaml

Blockchain Automation Framework Documentation, Release 0.4.0

2. One running Hashicorp Vault server per Organization. Unsealed and configured as per guidance here.

3. Domain Name(s) configured as per guidance here.

4. Private key file per Organization for GitOps with write-access to the Git repo as per guidance here.

5. Git user details per Organization as per pre-requisites.

6. Ansible controller configured as per guidance here.

NOTE: All commands are executed from the blockchain-automation-framework directory which is the
default directory created when you clone our Git repo.

Prepare build folder

If not already done, clone the git repository on your Ansible controller.

git clone https://github.com/<your username>/blockchain-automation-framework.git

Create a folder called build inside blockchain-automation-framework.

cd blockchain-automation-framework
mkdir build

Copy the following files inside build folder:

• All the Kubernetes config files (kubeconfig.yaml).

• All the private key files.

Edit the configuration file

Depending on your choice of DLT/Blockchain Platform, select a network.yaml and copy it to build folder.

eg for Fabric
cp platforms/hyperledger-fabric/configuration/samples/network-fabricv2.yaml build/
→˓network.yaml

Open and update the network.yaml according to the following Platform specific guides.

Platform-specific configuration files

• Hyperledger-Fabric

• R3-Corda

• Hyperledger-Indy

• Quorum

• Hyperledger-Besu

In summary, you will need to update the following:

1. docker url, username and password.

5.7. Generic operations 87

./configure_prerequisites.html#vaultunseal
./configure_prerequisites.html#ambassador
./configure_prerequisites.html#privatekey
./configure_prerequisites.html#Ansible_Inventory

Blockchain Automation Framework Documentation, Release 0.4.0

2. external_url_suffix depending on your Domain Name(s).

3. All DNS addresses depending on your Domain Name(s).

4. cloud_provider

5. k8s section depending on your Kubernetes zone/cluster name/config filepath.

6. vault

7. gitops section depending on your git username, tokens and private key filepath.

Executing provisioning script

After all the configurations are updated in the network.yaml, execute the following to create the DLT network

Run the provisioning scripts
ansible-playbook platforms/shared/configuration/site.yaml -e "@./build/network.yaml"

The site.yaml playbook, in turn calls various playbooks depending on the configuration file and sets up your
DLT/Blockchain network.

Verify successful configuration of DLT/Blockchain network

To verify if the network is successfully configured or not check if all the kubernetes pods are up and running or not.
Below are some commands to check the pod’s status:

• Kubectl get pods --all-namespaces : To get list of all the pods
and their status across all the namespaces. It will look as below -

• Kubectl get pods -n xxxxx : To check status of pods of a single namespace mentioned in place of
xxxxx. Example

88 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

• Kubectl logs -f <PODNAME> -n <NAMESPACE> : To check logs of a pod by giving required pod
name and namespace in the command. Example-

For a successful setup of DLT Network all the pods should be in running state.

Deleting an existing DLT/Blockchain network

The above mentioned playbook site.yaml (ReadMe) can be run to reset the network using the network configuration
file having the specifications which was used to setup the network using the following command:

ansible-playbook platforms/shared/configuration/site.yaml -e "@./build/network.yaml" -
→˓e "reset=true"

5.7.2 How to debug a BAF deployment

While deploying a DLT/Blockchain network using BAF, the pods and other components take some time to start. The
BAF automation (Ansible component) waits for the components to be at a “Running” or “Completed” state before
proceeding with further steps. This is where you can see the message “FAILED - RETRYING: . . . “

Each component has a retry count which can be configured in the configuration file (network.yaml). When everything
is fine, the components are usually up in 10-15 retries. Meanwhile, you can check the components while the retries
occurs to avoid unnecessary wait time till the error/Failed message occurs in Ansible logs.

BAF Deployment Flowchart

This flow chart shows the BAF Deployment process flow. To verify the steps of deploy-
ment, follow the flow chart and check verification table ‘C’ to troubleshoot the general errors.

5.7. Generic operations 89

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/site.yaml
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/

Blockchain Automation Framework Documentation, Release 0.4.0

Common Troubleshooting

Table ‘C’

90 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

NOTE:

If the components are not able to connect to each other, there could be some issue with load balancer. Check the
haproxy or external DNS logs for more debugging. Also verify the security groups for any possible conflicts.

If any pod/component of the network is not running (in crashloopbackoff or in error state) or is absent in the get pods
list.

Check the flux logs if it has been deployed or not. Check the helm release. Check the status as well as if the key-values
are generated properly. For further debugging check for pod/container logs. If components are there but not able to
talk to each, check whether the ambasssador/ haproxy is working properly, urls are properly mapped and ports are
opened for communication or not.

Hyperledger Fabric Checks

The flow chart shows the Fabric Deployment process. To verify the steps of deployment, follow the verification Table
‘F’, to troubleshoot the general errors.

5.7. Generic operations 91

Blockchain Automation Framework Documentation, Release 0.4.0

92 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

Fabric Troubleshooting

Table ‘F’

Final network validy check

For final checking of the validity of the fabric network.

• Create a CLI pod for any organization. (Now Peer CLI can be enabled from network.yaml itself. Check the
sample network.yaml for reference)

Use this sample template.

metadata:
namespace: ORG_NAME-net

images:
fabrictools: hyperledger/fabric-tools:2.0
alpineutils: index.docker.io/hyperledgerlabs/alpine-utils:1.0

storage:
class: ORG_NAMEsc
size: 256Mi

vault:
role: ault-role
address: VAULT_ADDR
authpath: ORG_NAME-net-auth
adminsecretprefix: secret/crypto/peerOrganizations/ORG_NAME-net/users/admin
orderersecretprefix: secret/crypto/peerOrganizations/ORG_NAME-net/orderer
serviceaccountname: vault-auth
imagesecretname: regcred
tls: false

peer:
name: PEER_NAME
localmspid: ORG_NAMEMSP
tlsstatus: true
address: PEER_NAME.ORG_NAME-net.EXTERNAL_URL_SUFFIX:8443

orderer:
address: ORDERER_NAME

• To install the CLI

helm install -f cli.yaml /blockchain-automation-framework/platforms/hyperledger-
→˓fabric/charts/fabric_cli/ -n <CLI_NAME>

• Get the CLI pod

export ORG1_NS=ORG_NAME-net
export CLI=$(kubectl get po -n ${ORG1_NS} | grep "cli" | awk '{print $1}')

• Copy the CLI pod name from the output list and enter the CLI using.

kubectl exec -it $CLI -n ORG_NAME-net -- bash

• To see which chaincodes are installed

5.7. Generic operations 93

Blockchain Automation Framework Documentation, Release 0.4.0

peer chaincode list --installed (after exec into the CLI)

• Check if the chaincode is instantiated or not

peer chaincode list --instantiated -C allchannel (after exec into the CLI)

• Execute a transaction

For init:

peer chaincode invoke -o <orderer url> --tls true --cafile <path of orderer tls
→˓cert> -C <channel name> -n <chaincode name> -c '{"Args":[<CHAINCODE_
→˓INSTANTIATION_ARGUMENT>]}' (after exec into the cli)

Upon successful invocation, should display a status 200 msg.

Hyperledger Indy Checks

The flow chart shows the Indy Deployment process. To verify the steps of deployment, follow the Verification Table
‘N’, to troubleshoot the general errors.

94 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

5.7. Generic operations 95

Blockchain Automation Framework Documentation, Release 0.4.0

Indy Troubleshooting

Table ‘N’

Final network validity check

For final checking of the validity of the indy network.

• Please find the generated pool genesis inside your releases/ReleaseName/OrgName/OrgName-ptg folder as
pool_genesis.yaml.

NOTE: All the organisations will have the same pool genesis. Hence, you
can pick from any organization

The sample ConfigMap:

apiVersion: helm.fluxcd.io/v1
kind: HelmRelease
metadata:
name: employer-ptg
annotations:

fluxcd.io/automated: "false"
namespace: employer-ns

spec:
releaseName: employer-ptg
chart:
path: platforms/hyperledger-indy/charts/indy-pool-genesis
git: https://github.com/<username>/blockchain-automation-framework.git
ref: main

values:
metadata:
name: employer-ptg
namespace: employer-ns

organization:
name: employer

configmap:
poolGenesis: |-
{"reqSignature":{},"txn":{"data":{"data":{"alias":"university-steward-1",

→˓"blskey":
→˓"3oYpr4xXDp1bgEKM6kJ8iaM66cpkHRe6vChvcEj52sFKforRkYbSq2G8ZF8dCSU4a8CdZWUJw6hJUYzY48zTKELYAgJrQyu7oAcmH1qQ5tqZc3ccp34wZaNFWEfWPt76cfd9BwGihzpMDRbQhMwLp68aasMXyYebn1MSbvkeg6UrmtM
→˓","blskey_pop":
→˓"RBS3XRtmErE6w1SEwHv69b7eSuHhnYh5tTs1A3NAjnAQwmk5SXeHUt3GNuSTB84L6MJskaziP8s7N6no34My4dizxkSbyuL7fWLEPTyxbAYZ3MGYzscZYWysXbSms2xFmYjT99n7uB78CgG8Chuo3iMuPJCAx6SBxTaAzTa7gAvtWB
→˓","client_ip":"127.0.0.1","client_port":15012,"node_ip":"127.0.0.1","node_port
→˓":15011,"services":["VALIDATOR"]},"dest":
→˓"Cj79w18ViZ7Q7gfb9iXPxYchHo4K4iVtL1oFjWbnrzBf"},"metadata":{"from":
→˓"NWpkXoWjzq9oQUTBiezzHi"},"type":"0"},"txnMetadata":{"seqNo":1,"txnId":
→˓"16bcef3d14020eac552e3f893b83f00847420a02cbfdc80517425023b75f124e"},"ver":"1"}

{"reqSignature":{},"txn":{"data":{"data":{"alias":"university-steward-2",
→˓"blskey":
→˓"4R1x9mGMVHu4vsWxiTgQEvQzPizyh2XspKH1KBr11WDNXt9dhbAVkSZBy2wgEzodjH9BcMzSjjVpHXQA3fJHgZJaGejH5DKzxyCm7XoEa8ff5rEnBfyGxMZRCtKio9GuovMBYmZkfA1XBexQcrZksPZc23NtnWJ9tWBonjWuzADiNKG
→˓","blskey_pop":
→˓"R14qoTS4urnSeNAMSgZzp2ryhi5kFLi1KCxK2ZP8Lk3Pa7FNFoqp6LrPanZxsdELVazsCEQv2B7fmexo3JGj3f2vtp2ZRzdaf9bAMReduFNZWe9vziQVYBA96maq82A7Ym2rSdK6hebJaix1ysv5LZy8jhNTYqjJoQ3fMEyRZ14EHM
→˓","client_ip":"127.0.0.1","client_port":15022,"node_ip":"127.0.0.1","node_port
→˓":15021,"services":["VALIDATOR"]},"dest":
→˓"ETdTNU6xrRwxuV4nPrXAecYsFGP6v8L5PpfGBnriC4Ao"},"metadata":{"from":
→˓"RhFtCjqTXAGbAhqJoVLrGe"},"type":"0"},"txnMetadata":{"seqNo":2,"txnId":
→˓"ab3146fcbe19c6525fc9c325771d6d6474f8ddec0f2da425774a1687a4afe949"},"ver":"1"}

(continues on next page)

96 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

{"reqSignature":{},"txn":{"data":{"data":{"alias":"employer-steward-1",
→˓"blskey":
→˓"2LieBpwUyP8gUVb16k7hGCUnZRNHdqazHVLbN2K2CgeE2cXt3ZC3yt8Gd8NheNHVdCU7cHcsEq5e1XKBS3LFXNQctiL6wMErxyXwcSWq8c9EtJwmqE7TESd5TaEYZhtrJ6TCDBdPU3BUFdw1q29g1omwYXRd6LZHmBsiWHYJbf4Mued
→˓","blskey_pop":
→˓"R9q58hsWHaVenRefuwh44fnhX8TcJMskiBX1Mf5ue7DEH8SGTajUcWVUbE3kT7mNeK2TeUMeXDcmboeSCkbpqtX2289ectbQAKj8pKWmkp7o5nkYjYwvqUsTaMutxXjSN6pvH9rLU13y86XkU1qDYoWvfJ6GT3qVetpEP26BGPv6Kq
→˓","client_ip":"127.0.0.1","client_port":15032,"node_ip":"127.0.0.1","node_port
→˓":15031,"services":["VALIDATOR"]},"dest":
→˓"C5F8eDsQZYQcUx1NPENenr9A1Jqr9ZCAXrcAoAcGkutY"},"metadata":{"from":
→˓"MKMbzGYtfpLk2NVhYSeSRN"},"type":"0"},"txnMetadata":{"seqNo":3,"txnId":
→˓"d85334ed1fb537b2ff8627b8cc4bcf2596d5da62c6d85244b80675ebae91fd07"},"ver":"1"}

{"reqSignature":{},"txn":{"data":{"data":{"alias":"employer-steward-2",
→˓"blskey":
→˓"36q2aZbJBp8Dpo16wzHqWGbsDs6zZvjxZwxxrD1hp1iJXyGBsbyfqMXVNZRokkNiD811naXrbqc8AfZET5sB5McQXni5as6eywqb9u1ECthYsemMq7knqZLGD4zRueLqhrAXLMVqdH4obiFFjjaEQQo9oAAzQKTfyimNWwHnwxp4yb3
→˓","blskey_pop":
→˓"QkYzAXabCzgbF3AZYzKQJE4sC5BpAFx1t32T9MWyxf7r1YkX2nMEZToAd5kmKcwhzbQZViu6CdkHTWrWMKjUHyVgdkta1QqQXQVMsSN7JPMSBwFSTc9qKpxC9xRabZHEmha5sD8nsEqwDCQ5iQ2dfuufGoPTEnrdNodW1m9CMRHsju
→˓","client_ip":"127.0.0.1","client_port":15042,"node_ip":"127.0.0.1","node_port
→˓":15041,"services":["VALIDATOR"]},"dest":
→˓"D2m1rwJHDo17nnCUSNvd7m1qRCiV6qCvEXxgGfuxtKZh"},"metadata":{"from":
→˓"P5DH5NEGC3agMBssdEMJxv"},"type":"0"},"txnMetadata":{"seqNo":4,"txnId":
→˓"1b0dca5cd6ffe526ab65f1704b34ec24096b75f79d4c0468a625229ed686f42a"},"ver":"1"}

• Copy the genesis block to a new file, say pool_genesis.txt

pool_genesis.txt >>

{"reqSignature":{},"txn":{"data":{"data":{"alias":"university-steward-1","blskey":
→˓"3oYpr4xXDp1bgEKM6kJ8iaM66cpkHRe6vChvcEj52sFKforRkYbSq2G8ZF8dCSU4a8CdZWUJw6hJUYzY48zTKELYAgJrQyu7oAcmH1qQ5tqZc3ccp34wZaNFWEfWPt76cfd9BwGihzpMDRbQhMwLp68aasMXyYebn1MSbvkeg6UrmtM
→˓","blskey_pop":
→˓"RBS3XRtmErE6w1SEwHv69b7eSuHhnYh5tTs1A3NAjnAQwmk5SXeHUt3GNuSTB84L6MJskaziP8s7N6no34My4dizxkSbyuL7fWLEPTyxbAYZ3MGYzscZYWysXbSms2xFmYjT99n7uB78CgG8Chuo3iMuPJCAx6SBxTaAzTa7gAvtWB
→˓","client_ip":"127.0.0.1","client_port":15012,"node_ip":"127.0.0.1","node_port
→˓":15011,"services":["VALIDATOR"]},"dest":
→˓"Cj79w18ViZ7Q7gfb9iXPxYchHo4K4iVtL1oFjWbnrzBf"},"metadata":{"from":
→˓"NWpkXoWjzq9oQUTBiezzHi"},"type":"0"},"txnMetadata":{"seqNo":1,"txnId":
→˓"16bcef3d14020eac552e3f893b83f00847420a02cbfdc80517425023b75f124e"},"ver":"1"}
{"reqSignature":{},"txn":{"data":{"data":{"alias":"university-steward-2","blskey":
→˓"4R1x9mGMVHu4vsWxiTgQEvQzPizyh2XspKH1KBr11WDNXt9dhbAVkSZBy2wgEzodjH9BcMzSjjVpHXQA3fJHgZJaGejH5DKzxyCm7XoEa8ff5rEnBfyGxMZRCtKio9GuovMBYmZkfA1XBexQcrZksPZc23NtnWJ9tWBonjWuzADiNKG
→˓","blskey_pop":
→˓"R14qoTS4urnSeNAMSgZzp2ryhi5kFLi1KCxK2ZP8Lk3Pa7FNFoqp6LrPanZxsdELVazsCEQv2B7fmexo3JGj3f2vtp2ZRzdaf9bAMReduFNZWe9vziQVYBA96maq82A7Ym2rSdK6hebJaix1ysv5LZy8jhNTYqjJoQ3fMEyRZ14EHM
→˓","client_ip":"127.0.0.1","client_port":15022,"node_ip":"127.0.0.1","node_port
→˓":15021,"services":["VALIDATOR"]},"dest":
→˓"ETdTNU6xrRwxuV4nPrXAecYsFGP6v8L5PpfGBnriC4Ao"},"metadata":{"from":
→˓"RhFtCjqTXAGbAhqJoVLrGe"},"type":"0"},"txnMetadata":{"seqNo":2,"txnId":
→˓"ab3146fcbe19c6525fc9c325771d6d6474f8ddec0f2da425774a1687a4afe949"},"ver":"1"}
{"reqSignature":{},"txn":{"data":{"data":{"alias":"employer-steward-1","blskey":
→˓"2LieBpwUyP8gUVb16k7hGCUnZRNHdqazHVLbN2K2CgeE2cXt3ZC3yt8Gd8NheNHVdCU7cHcsEq5e1XKBS3LFXNQctiL6wMErxyXwcSWq8c9EtJwmqE7TESd5TaEYZhtrJ6TCDBdPU3BUFdw1q29g1omwYXRd6LZHmBsiWHYJbf4Mued
→˓","blskey_pop":
→˓"R9q58hsWHaVenRefuwh44fnhX8TcJMskiBX1Mf5ue7DEH8SGTajUcWVUbE3kT7mNeK2TeUMeXDcmboeSCkbpqtX2289ectbQAKj8pKWmkp7o5nkYjYwvqUsTaMutxXjSN6pvH9rLU13y86XkU1qDYoWvfJ6GT3qVetpEP26BGPv6Kq
→˓","client_ip":"127.0.0.1","client_port":15032,"node_ip":"127.0.0.1","node_port
→˓":15031,"services":["VALIDATOR"]},"dest":
→˓"C5F8eDsQZYQcUx1NPENenr9A1Jqr9ZCAXrcAoAcGkutY"},"metadata":{"from":
→˓"MKMbzGYtfpLk2NVhYSeSRN"},"type":"0"},"txnMetadata":{"seqNo":3,"txnId":
→˓"d85334ed1fb537b2ff8627b8cc4bcf2596d5da62c6d85244b80675ebae91fd07"},"ver":"1"}
{"reqSignature":{},"txn":{"data":{"data":{"alias":"employer-steward-2","blskey":
→˓"36q2aZbJBp8Dpo16wzHqWGbsDs6zZvjxZwxxrD1hp1iJXyGBsbyfqMXVNZRokkNiD811naXrbqc8AfZET5sB5McQXni5as6eywqb9u1ECthYsemMq7knqZLGD4zRueLqhrAXLMVqdH4obiFFjjaEQQo9oAAzQKTfyimNWwHnwxp4yb3
→˓","blskey_pop":
→˓"QkYzAXabCzgbF3AZYzKQJE4sC5BpAFx1t32T9MWyxf7r1YkX2nMEZToAd5kmKcwhzbQZViu6CdkHTWrWMKjUHyVgdkta1QqQXQVMsSN7JPMSBwFSTc9qKpxC9xRabZHEmha5sD8nsEqwDCQ5iQ2dfuufGoPTEnrdNodW1m9CMRHsju
→˓","client_ip":"127.0.0.1","client_port":15042,"node_ip":"127.0.0.1","node_port
→˓":15041,"services":["VALIDATOR"]},"dest":
→˓"D2m1rwJHDo17nnCUSNvd7m1qRCiV6qCvEXxgGfuxtKZh"},"metadata":{"from":
→˓"P5DH5NEGC3agMBssdEMJxv"},"type":"0"},"txnMetadata":{"seqNo":4,"txnId":
→˓"1b0dca5cd6ffe526ab65f1704b34ec24096b75f79d4c0468a625229ed686f42a"},"ver":"1"}

(continues on next page)

5.7. Generic operations 97

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

• Install indy-CLI, in case not installed already, follow the official installation steps.

• Open the indy-CLI terminal

~$ indy-cli

• Create a pool

indy> pool create <POOL_ALIAS> gen_txn_file=<Path to pool_genesis.txt>

• Connect to indy pool

indy> pool connect <POOL_ALIAS>

Upon successful connection, should display a Pool Connected Successfully msg.

R3 Corda Checks

The flow chart shows the R3 Corda process. To verify the steps of deployment, follow the Verification Table ‘R’, to
troubleshoot the general errors.

98 Chapter 5. Operations Guide

https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/cli/README.html

Blockchain Automation Framework Documentation, Release 0.4.0

5.7. Generic operations 99

Blockchain Automation Framework Documentation, Release 0.4.0

R3 Corda Troubleshooting

Table ‘N’

Final R3 Corda (Network) Validation

Quorum Checks

The flow chart shows the Quorum Deployment process. To verify the steps of deployment, follow the verification
Table ‘Q’, to troubleshoot the general errors.

100 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

Quorum Troubleshooting

Table ‘Q’

Final network validity check

For final checking of the validity of the quorum network.

• Start interactive java script console to the node by doing geth attach

geth attach http://<peer.name>.<external_url_suffix>:<ambassador rpc port>

• Use admin.peers to get a list of the currently connected peers to ensure all the nodes are up and connected as
per the configuration on geth console.

$ admin.peers

• Use ‘/upcheck’ endpoint to check the health of transaction manager

$ curl --location --request GET 'https://<peer.name>.<external_url_suffix>:
→˓<ambassador port>/upcheck' -k

Upon successfull connection, response should be 200 I'm up!

NOTE: Use /partyinfo endpoint to know connected transaction manager,last
connect time and public keys

5.7.3 Adding a new storageclass

As storageclass templates vary as per requirements and cloud provider specifications, this guide will help in using a
new storageclass which is not supported by Blockchain Automation Framework (BAF)

• Adding a new storage class for Hyperledger Fabric

• Adding a new storage class for R3-Corda

• Adding a new storage class for Hyperledger Indy

• Adding a new storage class for Quorum

Adding a new storage class for Hyperledger Fabric

To add a new storageclass for Hyperledger Fabric, perform the following steps:

1. Add the new storageclass template sample_sc.tpl, under platforms/hyperledger-fabric/
configuration/roles/create/storageclass/templates with metadata.name (storage-
class name) as the variable sc_name. For example,

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: {{ sc_name }}
provisioner: kubernetes.io/aws-ebs
parameters:

type: gp2
encrypted: "true"

5.7. Generic operations 101

Blockchain Automation Framework Documentation, Release 0.4.0

1. Mention the template file, which you created above, under platforms/hyperledger-fabric/
configuration/roles/create/storageclass/vars/main.yaml with a variable reference. For
example,

sc_templates:
sample-sc: sample_sc.tpl

1. Set the type variable to sample-sc (variable created in step 2) in the task Create Storage
Class value file for orderers and Create Storage Class value file for
Organizations, located in platforms/hyperledger-fabric/configuration/roles/
create/storageclass/tasks/main.yaml

Adding a new storage class for R3-Corda

To add a new storageclass for R3-Corda, perform the following steps:

1. Add the new storageclass template sample_sc.tpl, under platforms/r3-corda/configuration/
roles/create/k8_component/templates with metadata.name (storageclass name) as the vari-
able component_name. For example,

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: {{ component_name }}
provisioner: kubernetes.io/aws-ebs
reclaimPolicy: Delete
volumeBindingMode: Immediate
parameters:

encrypted: "true"

1. Mention the template file, which you created above, under platforms/r3-corda/configuration/
roles/create/k8_component/vars/main.yaml with a variable reference. For example,

dlt_templates:
sample-sc: sample_sc.tpl

1. Set the component_type and component_name variable to sample-sc (variable created in step 2)
in the task Create storageclass, located in platforms/r3-corda/configuration/roles/
create/storageclass/tasks/main.yaml

Adding a new storage class for Hyperledger Indy

To add a new storageclass for Hyplerledger Indy, perform the following steps:

1. Add the new storageclass template sample_sc.tpl, under platforms/hyperledger-indy/
configuration/roles/create/k8_component/templates with metadata.name (storage-
class name) as the variable component_name. For example,

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: {{ component_name }}
provisioner: kubernetes.io/aws-ebs
reclaimPolicy: Delete
volumeBindingMode: Immediate

(continues on next page)

102 Chapter 5. Operations Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

parameters:
encrypted: "true"

1. Mention the template file, which you created above, under platforms/hyperledger-indy/
configuration/roles/create/k8_component/vars/main.yaml with a variable reference. For
example,

k8_templates:
sample-sc: sample_sc.tpl

1. Set the component_name variable to sample-sc (variable created in step 2) in the task
Create Storage Class, located in platforms/hyperledger-indy/configuration/
deploy-network.yaml

Adding a new storage class for Quorum

To add a new storageclass for Quorum, perform the following steps:

1. Add the new storageclass template sample_sc.tpl, under platforms/quorum/configuration/
roles/create/k8_component/templates with metadata.name (storageclass name) as the vari-
able component_name. For example,

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: {{ component_name }}
provisioner: kubernetes.io/aws-ebs
reclaimPolicy: Delete
volumeBindingMode: Immediate
parameters:

encrypted: "true"

1. Mention the template file, which you created above, under platforms/quorum/configuration/
roles/create/k8_component/vars/main.yaml with a variable reference. For example,

dlt_templates:
sample-sc: sample_sc.tpl

1. Set the component_type and component_name variable to sample-sc (variable created in step 2) in the
task Create storageclass, located in platforms/quorum/configuration/roles/create/
storageclass/tasks/main.yaml

5.7.4 Upgrading a running helm2 BAF deployment to helm3

This guide enables an operator to upgrade an existing BAF helm2 deployment to helm3

• Prerequisites

• Deleting the existing flux deployment

• Upgrade the helm deployments from Helm v2 to v3

• Re-deployment of flux

5.7. Generic operations 103

Blockchain Automation Framework Documentation, Release 0.4.0

Prerequisites

a. A running BAF deployment based on helm v2
b. Helm v2 binary in place and added to the path (accessible by the name `helm`)
c. BAF repository with the latest code

Deleting the existing flux deployment

The flux deployment has changed for helm v3, thus the older flux should be deleted. Also, the older flux will interfere
with the upgradation process, hence its removal or de-sync is necessary.

To delete the existing flux deployment, run:

helm del --purge flux-{{ network.env.type }}

Upgrade the helm deployments from Helm v2 to v3

Perform the following steps to upgrade the deployments

Download helm3 binary
wget https://get.helm.sh/helm-v3.2.4-linux-amd64.tar.gz

Extract the binary
tar -xvf helm-v3.2.4-linux-amd64.tar.gz

Move helm binary to the current folder
mv linux-amd64/helm helm3

Download the helm 2to3 plugin
./helm3 plugin install https://github.com/helm/helm-2to3

Convert all the releases to helm3 using
helm ls | awk '{print $1}' | xargs -n1 helm3 2to3 convert --delete-v2-releases

To convert a single helm release
./helm3 2to3 convert RELEASE_NAME --delete-v2-releases

NOTE: After migration, you can view the helm3 releases using the command,

./helm3 ls --all-namespaces

Re-deployment of flux

With the lastest BAF repo clone and the network.yaml, you can redeploy flux using

ansible-playbook platforms/shared/configuration/kubernetes-env-setup.yaml -e @<PATH_
→˓TO_NETWORK_YAML>

104 Chapter 5. Operations Guide

CHAPTER 6

Developer Guide

6.1 Quickstart Guides

6.1.1 Developer Prerequisites

The following mandatory pre-requisites must be completed to set up a development environment for BAF.

The process of setting up developer pre-requisites can be done manually or via an automation script (currently script
is for windows OS only)

Script Based Setup

You can use the scripts here to setup developer prerequisites for Windows or Mac systems.

NOTE: You need to run the script with admin rights. This can be done by right clicking the script and selecting ‘Run
as admininstrator’.

Manual Setup

The estimated total effort is 55 mins.

NOTE: You will need at least 8GB RAM to run BAF on local machine.

105

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/scripts

Blockchain Automation Framework Documentation, Release 0.4.0

Setting up Git on your machine

Estimated Time: 10 minutes

To use Git, you need to install the software on your local machine.

1. Download and install git bash from http://git-scm.com/downloads.

2. Open ‘git bash’ (For Windows, Start > Run, C:\Program Files (x86)\Git\bin\sh.exe --login
-i)

3. After the install has completed you can test whether Git has installed correctly by running the command git
--version

4. If this works successfully you will need to configure your Git instance by specifying your username and email
address. This is done with the following two commands (Use your GitHub username and email address, if you
already have a Github Account):

git config --global user.name "<username>"
git config --global user.email "<useremail>"

5. To verify that the username and password was entered correctly, check by running

git config user.name
git config user.email

6. Windows users should additionally execute the following so that the EOLs are not updated to Windows CRLF.

git config --global core.autocrlf false

Setting up Github

Estimated Time: 5 minutes

GitHub is a web-based Git repository hosting service. It offers all of the distributed revision control and source code
management (SCM) functionality of Git as well as adding its own features. You can create projects and repositories
for you and your teams’ need.

Complete the following steps to download and configure BAF repository on your local machine.

1. If you already have an account from previously, you can use the same account. If you don’t have an account,
create one.

2. Go to blockchain-automation-framework on GitHub and click Fork button on top right. This will create a copy
of the repo to your own GitHub account.

3. In git bash, write and execute the command:

ssh-keygen -q -N "" -f ~/.ssh/gitops

This generates an SSH key-pair in your user/.ssh directory: gitops (private key) and gitops.pub (public key).

4. Add the public key contents from gitops.pub (starts with ssh-rsa) as an Access Key (with read-write permissions)
in your Github repository by following this guide.

5. Execute the following command to add the key to your ssh-agent

eval "$(ssh-agent)"
ssh-add ~/.ssh/gitops

106 Chapter 6. Developer Guide

http://git-scm.com/downloads
https://github.com/
https://github.com/hyperledger-labs/blockchain-automation-framework
https://help.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account

Blockchain Automation Framework Documentation, Release 0.4.0

6. Create a project directory in your home directory and clone the forked repository to your local machine.

mkdir ~/project
cd ~/project
git clone git@github.com:<githubuser>/blockchain-automation-framework.git

7. Checkout the develop branch.

cd blockchain-automation-framework
git checkout develop

NOTE: If you have 2-Factor Authentication enabled on your GitHub account, you have to use GitHub token. Other-
wise, password is fine.

1. On GitHub page, click your profile icon and then click Settings.

2. On the sidebar, click Developer settings.

3. On the sidebar, click Personal access tokens.

4. Click Generate new token.

5. Add a token description, enable suitable access and click Generate token.

6. Copy the token to a secure location or password management app.

For security reasons, after you leave the page, you can no longer see the token again.

Setting up Docker

Estimated Time: 10 minutes

Install Docker Toolbox to make sure your local environment has the capbility to execute docker commands. You
can check the version of Docker you have installed with the following command from a terminal prompt:

docker --version

NOTE: For Windows, you MUST use Docker Toolbox with VirtualBox. Do not use Docker Desktop for Windows.
Also HyperV should be DISABLED for Mac and Windows.

Setting up HashiCorp Vault

Estimated Time: 15 minutes

We need Hashicorp Vault for the certificate and key storage.

1. To install the precompiled binary, download the appropriate package for your system.

2. Once the zip is downloaded, unzip it into any directory. The vault binary inside is all that is necessary to run
Vault (or vault.exe for Windows). Any additional files, if any, aren’t required to run Vault.

3. Create a directory project/bin and copy the binary there. Add project/bin directory to your PATH.
Run following from git bash.

6.1. Quickstart Guides 107

https://docs.docker.com/toolbox/overview/
https://www.vaultproject.io/
https://www.vaultproject.io/downloads/

Blockchain Automation Framework Documentation, Release 0.4.0

mkdir ~/project/bin
mv vault.exe ~/project/bin
export PATH=~/project/bin:$PATH

4. Create a config.hcl file in the project directory with the following contents (use a file path in the path
attribute which exists on your local machine)

ui = true
storage "file" {

path = "~/project/data"
}
listener "tcp" {

address = "0.0.0.0:8200"
tls_disable = 1

}

5. Start the Vault server by executing (this will occupy one terminal). Do not close this terminal.

vault server -config=config.hcl

6. Open browser at http://localhost:8200/. And initialize the Vault by provid-
ing your choice of key shares and threshold. (below example uses 1)

7. Click Download Keys or copy the keys, you will need them. Then click Continue to Unseal. Provide the
unseal key first and then the root token to login.

8. In a new terminal, execute the following (assuming vault is in your PATH):

108 Chapter 6. Developer Guide

http://localhost:8200/

Blockchain Automation Framework Documentation, Release 0.4.0

export VAULT_ADDR='http://<Your Vault local IP address>:8200' #e.g. http://192.
→˓168.0.1:8200
export VAULT_TOKEN="<Your Vault root token>"

enable Secrets v1
vault secrets enable -version=1 -path=secret kv

Setting up Minikube

Estimated Time: 15 minutes

For development environment, minikube can be used as the Kubernetes cluster on which the DLT network will be
deployed.

1. Follow platform specific instructions to install minikube on your local machine. Also install Virtualbox as the
Hypervisor. (If you already have HyperV it should be removed or disabled.)

2. Minikube is also a binary, so move it into your ~/project/bin directory as it is already added to PATH.

3. Configure minikube to use 4GB memory and default kubernetes version

minikube config set memory 4096
minikube config set kubernetes-version v1.16.13

4. Then start minikube. This will take longer the first time.

minikube start --vm-driver=virtualbox

5. Check status of minikube by running

minikube status

The Kubernetes config file is generated at ~/.kube/config

6. To stop (do not delete) minikube execute the following

minikube stop

Now your development environment is ready!

NOTE: Minikube uses port in range 30000-32767. If you would like to change it, use the following command:

minikube start --vm-driver=virtualbox --extra-config=apiserver.service-node-port-
→˓range=15000-20000

Troubleshooting

At Step 5, if you get the following error:

2020-03-10T17:00:21.664Z [ERROR] core: failed to initialize barrier: error="failed to
→˓persist keyring: mkdir /project: permission denied"

Update the path in Vault config.hcl to absolute path:

6.1. Quickstart Guides 109

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://www.virtualbox.org/wiki/Downloads

Blockchain Automation Framework Documentation, Release 0.4.0

storage "file" {
path = "/full/path/to/project/vault"

}

For example, /home/users/Desktop/project/vault.

6.1.2 Running BAF DLT network on Minikube

Pre-requisites

Before proceeding, first make sure that you’ve completed Developer Pre-requisites.

Clone forked repo

1. If you have not already done so, fork blockchain-automation-framework and clone the forked repo to your
machine.

cd ~/project
git clone git@github.com:<githubuser>/blockchain-automation-framework.git

2. Add a “local” branch to your machine

cd ~/project/blockchain-automation-framework
git checkout -b local
git push --set-upstream origin local

Update kubeconfig file

1. Create a build folder inside your BAF repository:

cd ~/project/blockchain-automation-framework
mkdir build

2. Copy ca.crt, client.key, client.crt from ~/.minikube to build:

cp ~/.minikube/ca.crt build/
cp ~/.minikube/client.key build/
cp ~/.minikube/client.crt build/

3. Copy ~/.kube/config file to build:

cp ~/.kube/config build/

4. Open the above config file and remove the paths for certificate-authority, client-certificate and client-key as in
the figure below.

110 Chapter 6. Developer Guide

https://blockchain-automation-framework.readthedocs.io/en/develop/developer/dev_prereq.html
https://github.com/hyperledger-labs/blockchain-automation-framework

Blockchain Automation Framework Documentation, Release 0.4.0

NOTE: If you ever delete and recreate minikube, the above steps have to be repeated.

5. Copy gitops file from ~/.ssh to build. (This is the private key file which you used to authenticate to your GitHub
in pre-requisites)

cp ~/.ssh/gitops build/

Additional Windows configurations

1. Ensure that you have set the following git config before cloning the repo.

git config --global core.autocrlf false

2. If not, update the EOL to LF for platforms/hyperledger-fabric/scripts/*.sh files.

3. Execute following to correctly set docker environment.

eval $('docker-machine.exe' env)

4. Mount windows local folder (blockchain-automation-framework folder) to VirtualBox docker VM (the machine
named “default” by default) from right-click menu, Settings -> Shared Folders. All paths in network.yaml should
be the mounted path. Shut down and restart the “default” machine after this.

6.1. Quickstart Guides 111

Blockchain Automation Framework Documentation, Release 0.4.0

Edit the configuration file

1. Choose the DLT/Blockchain platform you want to run and copy the relevant sample network.yaml to build
folder; rename it to network.yaml.

cd ~/project/blockchain-automation-framework
cp platforms/hyperledger-fabric/configuration/samples/network-minikube.yaml build/
→˓network.yaml

2. Update Docker configurations:

docker:
url: "index.docker.io/hyperledgerlabs"
username: "<your docker username>"
password: "<your docker password/token>"

3. For each organization, update ONLY the following and leave everything else as is:

vault:
url: "http://<Your Vault local IP address>:8200" # Use the local IP address

→˓rather than localhost e.g. http://192.168.0.1:8200
root_token: "<your vault_root_token>"

gitops:
git_url: "<https/ssh url of your forked repo>" #e.g. "https://github.com/

→˓hyperledger-labs/blockchain-automation-framework.git" (continues on next page)

112 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

git_repo: "<https url of your forked repo without the https://>" #e.g. "github.
→˓com/hyperledger-labs/blockchain-automation-framework.git"
username: "<github_username>"
password: "<github token/password>"
email: "<github_email>"

If you need help, you can use each platform’s sample network-minikube.yaml:

• For Fabric, use platforms/hyperledger-fabric/configuration/samples/
network-minikube.yaml

• For Quorum, use platforms/quorum/configuration/samples/network-minikube.yaml

• For Corda, use platforms/r3-corda/configuration/samples/network-minikube.yaml

And simply replace the placeholder values.

NOTE: If you have 2-Factor Authentication enabled on your GitHub account, you have to use GitHub token. Other-
wise, password is fine.

1. On GitHub page, click your profile icon and then click Settings.

2. On the sidebar, click Developer settings.

3. On the sidebar, click Personal access tokens.

4. Click Generate new token.

5. Add a token description, enable suitable access and click Generate token.

6. Copy the token to a secure location or password management app.

For security reasons, after you leave the page, you can no longer see the token again.

1. Deploying the sample “supplychain” chaincode is optional, so you can delete the “chaincode” section. If de-
ploying chaincode, update the following for the peers.

chaincode:
repository:

username: "<github_username>"
password: "<github_token>"

Execute

Make sure that Minikube and Vault server are running. Double-check by running:

minikube status
vault status

Now run the following to deploy BAF Fabric on minikube:

docker run -it -v $(pwd):/home/blockchain-automation-framework/ hyperledgerlabs/baf-
→˓build

Windows users should use following (make sure that the local volume was mounted as per this step):

6.1. Quickstart Guides 113

Blockchain Automation Framework Documentation, Release 0.4.0

docker run -it -v /blockchain-automation-framework:/home/blockchain-automation-
→˓framework/ hyperledgerlabs/baf-build

Meanwhile you can also check if pods are being deployed:

kubectl get pods --all-namespaces -w

NOTE: If you need public address for nodes in your network.yaml file, you can use the output of minikube
ip.

NOTE. baf-build image is using jdk14 but Corda and Corda Enterprise requires jdk8. In this case, you can use the
prebuild image tag jdk8 hyperledgerlabs/baf-build:jdk8

Troubleshooting

Failed to establish a new connection: [Errno 111] Connection refused

This is because you have re-created minikube but have not updated K8s config file. Repeat “Update kubeconfig
file” steps 3 - 4 and try again.

kubernetes.config.config_exception.ConfigException: File does not exists:
/Users/.minikube/ca.crt

This is because you have not removed the absolute paths to the certificates in config file. Repeat “Update kubeconfig
file” step 4 and try again.

error during connect: Get http://%2F%2F.%2Fpipe%2Fdocker_engine/v1.40/
version: open //./pipe/docker_engine: The system cannot find the file
specified. In the default daemon configuration on Windows, the docker client
must be run elevated to connect. This error may also indicate that the docker
daemon is not running

This is because docker isn’t running. To start it, just close all the instances of Docker Quickstart Terminal and open
again.

ERROR! the playbook: /home/blockchain-automation-framework/platforms/shared/
configuration/site.yaml could not be found

This is because the blockchain-automation-framework repository isn’t mounted to the default VM. Check this step.

6.1.3 DLT Blockchain Network deployment using docker build

Building the docker image

Build the docker image using the docker file Dockerfile provided in the blockchain-automation-framework repos-
itory.

The docker image should be built from the root directory of the repository, the image builds the required base en-
viorment for BAF deployment and copies the a provisional script run.sh in the WORKDIR, it also sets a path for
mounting volume

Following is a code snippet of the docker image showing WORKDIR and VOLUME

WORKDIR /home/

114 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

The VOLUME instruction creates a mount point with the specified name and marks it as holding externally mounted
volumes from native host

VOLUME /home/blockchain-automation-framework/

Use the below command to build the image

docker build . -t hyperledgerlabs/baf-build

This would create an image named hyperledgerlabs/baf-build

Running the docker and provisioning script

A shell script run.sh is provided in repository to set the environment variables and run the network deployment
playbook.

The BAF Dockerfile provides defaults for the executing container using the CMD variable

CMD ["/home/run.sh"]

Use the below command to run the container and the provisioning scripts, the command needs to be run from the root
directory of the repository. The command also binds and mounts a volume, in this case it binds the repository

docker run -it -v $(pwd):/home/blockchain-automation-framework/ hyperledgerlabs/baf-
→˓build

NOTE. baf-build image is using jdk14 but Corda and Corda Enterprise requires jdk8. In this case, you can build the
baf-build image using Dockerfile.jdk8 or use the prebuild image tag jdk8 hyperledgerlabs/baf-build:jdk8

Before running the above command add a build folder in the root directory of the repository, this build folder should
have the following files:

1. K8s config file as config

2. Network specific configuration file as network.yaml

3. Private key file which has write-access to the git repo

Screen shot of the folder structure is below:

The paths in network configuration file should be changed accordingly.

6.1. Quickstart Guides 115

Blockchain Automation Framework Documentation, Release 0.4.0

6.2 Additional Developer prerequisites

• Sphinx tool

• Molecule

6.2.1 Sphinx tool

Sphinx is a tool that makes it easy to create intelligent and beautiful documentation. This tool is needed to build the
Blockchain Automation Framework documentation from docs folder.

• Sphinx version used 2.1.1

Sphinx installation: Follow the link to install sphinx documentation tool.

All the Blockchain Automation Framework documentation and Sphinx Configuration files (conf.py) are located in
docs/source folder. To build the documentation, execute the following command from docs directory:

make html
or for Windows
.\Make.bat html

6.2.2 Molecule

Molecule is designed to aid in the development and testing of Ansible roles. In BAF, Molecule is used to check for
common coding standards, yaml errors and unit testing Ansible code/roles.

• Molecule version used 2.22

Requirements

• Docker Engine

• Python3 (and pip configured with python3)

Molecule installation Please refer to the Virtual environment documentation for installation best practices. If not
using a virtual environment, please consider passing the widely recommended ‘–user’ flag when invoking pip.

$ pip install --user 'molecule[docker]'

The existing test scenarios are found in the molecule folder under configuration of each platform e.g. plat-
forms/shared/configuration/molecule folder.

6.3 Ansible Roles and Playbooks

6.3.1 Common Configurations

The Blockchain Automation Framework installs the common pre-requisites when the site.yaml playbook is run.
To read more about setting up DLT/Blockchain networks, refer Setting up a Blockchain/DLT network.

Following playbooks can be executed independently to setup the enviornment and can be found here

1. enviornment-setup.yaml Playbook enviornment-setup.yaml executes the roles which has tasks to install the
binaries for:

• kubectl

116 Chapter 6. Developer Guide

http://www.sphinx-doc.org/en/master/usage/installation.html
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/docs/source
https://molecule.readthedocs.io/en/latest/
https://ansible.com/
https://virtualenv.pypa.io/en/latest/
https://packaging.python.org/tutorials/installing-packages/#installing-to-the-user-site
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/molecule
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/molecule
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration

Blockchain Automation Framework Documentation, Release 0.4.0

• helm

• vault client

• aws-authenticator

2. kubernetes-env-setup.yaml Playbook kubernetes-env-setup.yaml executes the roles which has tasks to config-
ure the following on each Kubernetes cluster:

• flux

• ambassador (if chosen)

• haproxy-ingress (if chosen)

All the common Ansible roles can be found at platforms/shared/configuration/roles

• setup/ambassador

• setup/aws-auth

• setup/aws-cli

• setup/flux

• setup/haproxy-ingress

• setup/helm

• setup/kubectl

• setup/vault

Follow Readme for detailed information on each of these roles.

6.3.2 Corda Configurations

In the Blockchain Automation Framework project, ansible is used to automate the certificate generation, putting them
in vault and generate value files, which are then pushed to the repository for deployment, using GitOps. This is
achieved using Ansible playbooks. Ansible playbooks contains a series of roles and tasks which run in sequential
order to achieve the automation.

/r3-corda
|-- charts
| |-- doorman
| |-- doorman-tls
| |-- h2
| |-- h2-addUser
| |-- h2-password-change
| |-- mongodb
| |-- mongodb-tls
| |-- nms
| |-- nms-tls
| |-- node
| |-- node-initial-registration
| |-- notary
| |-- notary-initial-registration
| |-- storage
|-- images
|-- configuration
| |-- roles/
| |-- samples/

(continues on next page)

6.3. Ansible Roles and Playbooks 117

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/roles
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/roles/

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

| |-- playbook(s)
| |-- openssl.conf
|-- releases
| |-- dev/
|-- scripts

For R3-Corda, the ansible roles and playbooks are located at /platforms/r3-corda/configuration/ Some
of the common roles and playbooks between Hyperledger-Fabric, Hyperledger-Indy, Hyperledger-Besu, R3 Corda and
Quorum are located at /platforms/shared/configurations/

Roles for setting up Corda Network

Roles in ansible are a combination of logically inter-related tasks.

Below is the single playbook that you need to execute to setup complete corda network.

deploy_network

This is the main ansible playbook which call all the roles in below sequence to setup corda network.

• Create Storage Class

• Create namespace and vault auth

• Deploy Doorman service node

• Deploy Networkmap service node

• Check that network service uri are reachable

• Deploy notary

• Deploy nodes

• Remove build directory

Follow Readme for detailed information.

Below are the roles that deploy_network playbook calls to complete the setup process.

setup/nms

• Perform all the prerequisites (namespace, Vault auth, rbac, imagepullsecret)

• Create nms helm value files

• Check-in to git repo

Follow Readme for detailed information.

setup/doorman

• Perform all the prerequisites (namespace, Vault auth, rbac, imagepullsecret)

• Create doorman and mongodb helm value files

• Check-in to git repo

118 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda/configuration
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda/configuration/roles/setup/nms

Blockchain Automation Framework Documentation, Release 0.4.0

Follow Readme for detailed information.

create/certificates

• Generate root certificates for doorman and nms

Follow Readme for detailed information.

setup/notary

• Perform all the prerequisites (namespace, Vault auth, rbac, imagepullsecret)

• Get crypto from doorman/nms, store in Vault

• Create notary db helm value files

• Create notary initial registration helm value files

• Create notary value files

• Check-in to git repo

Follow Readme for detailed information.

setup/node

• Perform all the prerequisites (namespace, Vault auth, rbac, imagepullsecret)

• Get crypto from doorman/nms, store in Vault

• Create node db helm value files

• Create node initial registration helm value files

• Create node value files

• Check-in to git repo

Follow Readme for detailed information.

deploy/cordapps

• Deploy cordapps into each node and notary

Follow Readme for detailed information.

setup/springboot_services

• Create springboot webserver helm value files for each node

• Check-in to git repo

Follow Readme for detailed information.

6.3. Ansible Roles and Playbooks 119

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda/configuration/roles/setup/doorman
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda/configuration/roles/create/certificates
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda/configuration/roles/setup/notary
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda/configuration/roles/setup/node
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda/configuration/roles/deploy/cordapps
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda/configuration/roles/setup/springboot_services

Blockchain Automation Framework Documentation, Release 0.4.0

setup/get_crypto

• Ensure admincerts directory exists

• Save the cert file

• Save the key file

• Save the root keychain

• Save root cert

• Save root key

Follow Readme for detailed information.

6.3.3 Corda Enterprise Configurations

In the Blockchain Automation Framework project, Ansible is used to automate the certificate generation, putting
them in vault and generate value files, which are then pushed to the git repository for deployment, using Gi-
tOps. This is achieved using Ansible playbooks. Ansible playbooks contains a series of roles and tasks which run
in sequential order to achieve the automation. For R3-Corda Enterprise, the ansible roles and playbooks are lo-
cated at platforms/r3-corda-ent/configuration/ Some of the common roles and playbooks between
Hyperledger-Fabric, Hyperledger-Indy, Hyperledger-Besu, R3 Corda and Quorum are located at platforms/
shared/configurations/

platforms/r3-corda-ent/configuration
deploy-network.yaml
deploy-nodes.yaml
openssl.conf
README.md
reset-network.yaml
roles

create
certificates
k8_component
namespace_serviceaccount
storageclass

delete
flux_releases
gitops_files
vault_secrets

helm_component
Readme.md
tasks
templates
vars

setup
bridge
cenm
credentials
float
get_crypto
idman
nmap
node
node_registration
notary

(continues on next page)

120 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda/configuration/roles/setup/get_crypto

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

notary-initial-registration
pki-generator
signer
tlscerts
vault_kubernetes

samples
network-cordaent.yaml
README.md

Playbooks for setting up Corda Enterprise Network

Below are the playbooks availabe for the network operations.

deploy_network.yaml

This is the main ansible playbook which call all the roles in below sequence to setup Corda Enterprise network.

• Remove build directory

• Create Storage Class

• Create namespace and vault auth

• Deploy CENM services

• Check that network service uri are reachable

• Deploy nodes

deploy_nodes.yaml

This ansible playbook should be used when deploying only the nodes. This can be used when the CENM Services are
already up and managed by a different network.yaml. This calls the below supporting roles in sequence.

• Remove build directory

• Create Storage Class

• Create namespace and vault auth

• Check that network service uri are reachable

• Deploy nodes

reset_network.yaml

This ansible playbook is used when deleting the network. This calls the below supporting roles in sequence.

• Deletes the Gitops release files

• Deletes the Vault secrets and authpaths

• Uninstalls Flux

• Deletes the helm releases from Kubernetes

6.3. Ansible Roles and Playbooks 121

Blockchain Automation Framework Documentation, Release 0.4.0

• Remove build directory

Follow Readme for detailed information.

Roles defined for Corda Enterprise

Roles in ansible are a combination of logically inter-related tasks. Below are the roles that are defined for Corda
Enterprise.

create/certificates/cenm

• Creates the Ambassador Proxy TLS Certificates for CENM components

• Saves them to Vault

• Creates Kubernetes secrets to be used by Ambassador pods

Follow Readme for detailed information.

create/certificates/node

• Creates the Ambassador Proxy TLS Certificates for Corda Nodes

• Saves them to Vault

• Creates Kubernetes secrets to be used by Ambassador pods

Follow Readme for detailed information.

create/k8_component

• Creates various Kubernetes components based on the templates

• Checks-in to git repo

Add new tpl files in templates folder when defining new storageclass.

Follow Readme for detailed information.

create/namespace_serviceaccount

• Creates the namespace, serviceaccounts and clusterrolebinding

• Checks-in to git repo

create/storageclass

• Creates the storageclass template with name “cordaentsc”

• Checks-in to git repo

Follow Readme for detailed information.

122 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/create/certificates/cenm
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/create/certificates/node
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/create/k8_component
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/create/storageclass

Blockchain Automation Framework Documentation, Release 0.4.0

delete/flux_releases

• Deletes all helmreleases in the namespace

• Deletes the namespace

Follow Readme for detailed information.

delete/gitops_files

• Deletes all gitops files from release folder

• Checks-in to git repo

Follow Readme for detailed information.

delete/vault_secrets

• Deletes all contents of Vault

• Deletes the related Kubernetes secrets

• Deletes Vault access policies

Follow Readme for detailed information.

helm_component

• Creates various Helmrelease components based on the templates

• Performs helm lint (when true)

Most default values are in the tpl files in templates folder. If any need to be changed, these tpl files need to be
edited.

Follow Readme for detailed information.

setup/bridge

• Create helmrelease files for Bridge component

• Check-in to git repo

Follow Readme for detailed information.

setup/cenm

• Checks all the prerequisite namespaces and serviceaccounts are created

• Creates vault access for cenm organization

• Calls setup/pki-generator role to generate network crypto.

• Calls setup/signer role to deploy signer service.

• Calls setup/idman role to deploy idman service.

• Calls setup/nmap role to deploy nmap service.

6.3. Ansible Roles and Playbooks 123

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/delete/flux_releases
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/delete/gitops_files
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/delete/vault_secrets
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/helm_component
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/setup/bridge

Blockchain Automation Framework Documentation, Release 0.4.0

• Calls setup/notary role to deploy notary service.

Follow Readme for detailed information.

setup/credentials

• Writes keystore, truststore, ssl passwords for CENM services

• Writes node keystore, node truststore, network root-truststore passwords for CENM services

Follow Readme for detailed information.

setup/float

• Create helmrelease files for Float component

• Check-in to git repo

Follow Readme for detailed information.

setup/get_crypto

• Saves the Ambassador cert and key file to local file from Vault when playbook is re-run.

Follow Readme for detailed information.

setup/idman

• Wait for Signer pod to be “Running”

• Creates Ambassador certs by calling create/certificates/cenm role

• Create idman value files

• Check-in to git repo

setup/nmap

• Wait for PKI Job to “Complete” if certificates are not on Vault

• Creates Ambassador certs by calling create/certificates/cenm role

• Gets network-root-truststore.jks from Vault to save to local

• Create Notary-registration Job if not done already

• Wait forNotary-registration Job to “Complete” if not done already

• Create nmap value files

• Check-in to git repo

Follow Readme for detailed information.

124 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/setup/cenm
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/setup/credentials
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/setup/float
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/setup/get_crypto
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/setup/nmap

Blockchain Automation Framework Documentation, Release 0.4.0

setup/node

• Wait for all the prerequisites (namespace, Vault auth, rbac, imagepullsecret)

• Create Vault access using setup/vault_kubernetes role

• Create ambassador certificates by calling create/certificates/node

• Save idman/networkmap tls certs to Vault for this org

• Create node initial registration by calling setup/node_registration role

• Create node value files

• Create bridge, if enabled, by calling setup/bridge

• Create float, if enabled, by calling setup/float

• Check-in to git repo

Follow Readme for detailed information.

setup/node_registration

• Create node db helm value files

• Create node initial registration helm value files, if not registered already

• Check-in to git repo

Follow Readme for detailed information.

setup/notary

• Wait for networkmap pod to be “Running”

• Create ambassador certificates by calling create/certificates/cenm

• Create notary value files

• Check-in to git repo

Follow Readme for detailed information.

setup/notary-initial-registration

• Wait for idman pod to be “Running”

• Create notary db helm value files

• Create notary initial registration helm value files, if not registered already

• Check-in to git repo

Follow Readme for detailed information.

setup/pki-generator

• Create pki-generator value files, if values are not in Vault

• Check-in to git repo

6.3. Ansible Roles and Playbooks 125

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/setup/node
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/setup/node_registration
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/setup/notary
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/setup/notary-initial-registration

Blockchain Automation Framework Documentation, Release 0.4.0

setup/signer

• Wait for pki-generator Job to be “Completed”

• Create signer value files

• Check-in to git repo

Follow Readme for detailed information.

setup/tlscerts

• Copies the idman/nmap certificates and truststore to each node’s Vault

Follow Readme for detailed information.

setup/vault_kubernetes

• Creates vault auth path if it does not exist

• Gets Kubernetes CA certs

• Enables Kubernetes and Vault authentication

• Creates Vault policies if they do not exist

• Creates docker credentials if they do not exist

If the Vault policies need to be changed, then this role will need to be edited.

Follow Readme for detailed information.

6.3.4 Fabric Configurations

In the Blockchain Automation Framework project, ansible is used to automate the certificate generation, putting them
in vault and generate value files, which are then pushed to the repository for deployment, using GitOps. This is
achieved using Ansible playbooks. Ansible playbooks contains a series of roles and tasks which run in sequential
order to achieve the automation.

/hyperledger-fabric
|-- charts
| |-- ca
| |-- catools
| |-- zkkafka
| |-- orderernode
| |-- peernode
| |-- create_channel
| |-- join_channel
| |-- install_chaincode
| |-- instantiate_chaincode
| |-- upgrade_chaincode
|-- images
|-- configuration
| |-- roles/
| |-- samples/
| |-- playbook(s)
| |-- openssl.conf
|-- releases

(continues on next page)

126 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/setup/signer
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/setup/tlscerts
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/configuration/roles/setup/vault_kubernetes

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

| |-- dev/
|-- scripts

For Hyperledger-Fabric, the ansible roles and playbooks are located at /platforms/hyperledger-fabric/
configuration/ Some of the common roles and playbooks between Hyperledger-Fabric, Hyperledger-Indy,
Hyperledger-Besu, R3 Corda and Quorum are located at /platforms/shared/configurations/

Roles for setting up Fabric Network

Roles in ansible are a combination of logically inter-related tasks.

Below is the single playbook that you need to execute to setup complete fabric network.

create/anchorpeer

• Call nested_anchorpeer for each organization

• Check join channel job is done

• Creating value file of anchor peer for {{ channel_name }}

• Git Push

Follow Readme for detailed information.

create/ca_server

• Check if CA certs already created

• Ensures crypto dir exists

• Get CA certs and key

• Generate the CA certificate

• Copy the crypto material to Vault

• Check if CA admin credentials are already created

• Write the CA server admin credentials to Vault

• Check Ambassador cred exists

• Create the Ambassador credentials

• Create CA server values for Orderer

• Create CA server values for Organisations

• Git Push

Follow Readme for detailed information.

6.3. Ansible Roles and Playbooks 127

https://github.com/hyperledger-labs/blockchain-automation-framework/blob/main/platforms/hyperledger-fabric/configuration/roles/create/anchorpeer/
https://github.com/hyperledger-labs/blockchain-automation-framework/blob/main/platforms/hyperledger-fabric/configuration/roles/create/ca-server/

Blockchain Automation Framework Documentation, Release 0.4.0

create/ca_tools

• Check CA-server is available

• Create CA-tools Values file

• Git Push

Follow Readme for detailed information.

create/chaincode/install

• Create value file for chaincode installation

• Check/Wait for anchorpeer update job

• Check for install-chaincode job

• Write the git credentials to Vault

• Create value file for chaincode installation (nested)

• Git Push

Follow Readme for detailed information.

create/chaincode/instantiate

• Create value file for chaincode instantiation

• Check/Wait for install-chaincode job

• Check for instantiate-chaincode job

• Create value file for chaincode instantiaiton (nested)

• Git Push

Follow Readme for detailed information.

create/chaincode/invoke

• Create value file for chaincode invocation

• Check/Wait for install-chaincode job

• Create value file for chaincode invocation (nested)

• Git Push

Follow Readme for detailed information.

create/chaincode/upgrade

• Check/Wait for install-chaincode job

• Create value file for chaincode upgrade

• Git Push

Follow Readme for detailed information.

128 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/ca-tools
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/chaincode/install
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/chaincode/instantiate
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/chaincode/invoke
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/chaincode/upgrade/tasks

Blockchain Automation Framework Documentation, Release 0.4.0

create/channel_artifacts

• Check configtxgen

• Geting the configtxgen binary tar

• Unzipping the downloaded file

• Moving the configtxgen from the extracted folder and place in it path

• Creating channel-artifacts folder

• Write BASE64 encoded genesis block to Vault

• Remove old channel block

• Creating channels

• Creating Anchor artifacts

• Creating JSON configration for new organization

Follow Readme for detailed information.

create/genesis

• Remove old genesis block

• Creating genesis block

• Write genesis block to Vault

Follow README for more information.

create/channels

• Call valuefile when participant is creator

• Check orderer pod is up

• Check peer pod is up

• Create Create_Channel value file

• Git Push

Follow Readme for detailed information.

create/channels_join

• Call nested_channel_join for each peer

• Check create channel job is done

• “join channel {{ channel_name }}”

• Git Push

• Call check for each peer

• Check join channel job is done

Follow Readme for detailed information.

6.3. Ansible Roles and Playbooks 129

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/channel_artifacts
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/develop/platforms/hyperledger-fabric/configuration/roles/create/genesis
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/channels
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/channels_join

Blockchain Automation Framework Documentation, Release 0.4.0

create/configtx

• Remove old configtx file

• Create configtx file

• Adding init patch to configtx.yaml

• Adding organization patch to configtx.yaml

• Adding orderer patch to configtx.yaml

• Adding profile patch to configtx.yaml

Follow Readme for detailed information.

create/crypto/orderer

• Call orderercheck.yaml for orderer

• Check if CA-tools is running

• Ensure CA directory exists

• Check if CA certs already created

• Check if CA key already created

• Call orderer.yaml for each orderer

• Check if orderer msp already created

• Get MSP info

• Check if orderer tls already created

• Ensure tls directory exists

• Get Orderer tls crt

• Create directory path on CA Tools

• Copy generate-usercrypto.sh to destination directory

• Changing the permission of msp files

• Copy the generate_crypto.sh file into the CA Tools

• Generate crypto material for organization orderers

• Copy the crypto config folder from the CA tools

• Copy the crypto material for orderer

• Check Ambassador cred exists

• Check if orderer ambassador secrets already created

• Get Orderer ambassador info

• Generate the orderer certificate

• Create the Ambassador credentials

• Copy the crypto material to Vault

Follow Readme for detailed information.

130 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/configtx
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/crypto/orderer

Blockchain Automation Framework Documentation, Release 0.4.0

create/crypto/peer

• Check if CA-tools is running

• Ensure CA directory exists

• Check if CA certs already created

• Check if CA key already created

• Call peercheck.yaml for each peer

• Check if peer msp already created

• Get MSP info

• Call common.yaml for each peer

• Create directory path on CA Tools

• Copy generate-usercrypto.sh to destination directory

• Changing the permission of msp files

• Copy the generate_crypto.sh file into the CA Tools

• Generate crypto material for organization peers

• Copy the crypto config folder from the CA tools

• Check that orderer-certificate file exists

• Ensure orderer tls cert directory exists

• Copy tls ca.crt from auto-generated path to given path

• Check if Orderer certs exist in Vault

• Save Orderer certs if not in Vault

• Copy organization level certificates for orderers

• Check if admin msp already created

• Copy organization level certificates for orgs

• Check if user msp already created

• Copy user certificates for orgs

Follow Readme for detailed information.

create/crypto_script

• Create generate_crypto script file for orderers

• Create generate_crypto script file for organizations

Follow Readme for detailed information.

create/namespace_vaultauth

• Check namespace is created

• Create namespaces

6.3. Ansible Roles and Playbooks 131

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/crypto/peer
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/crypto_script

Blockchain Automation Framework Documentation, Release 0.4.0

• Create vault reviewer service account for Organizations

• Create vault auth service account for Organizations

• Create clusterrolebinding for Orderers

• Git Push

Follow Readme for detailed information.

create/new_organisation/create_block

• Call nested_create_json for each peer

• Ensure channel-artifacts dir exists

• Remove old anchor file

• Creating new anchor file

• adding new org peers anchor peer information

• Create create-block-{{ channel_name }}.sh script file for new organisations

Follow Readme for detailed information.

create/orderers

• create kafka clusters

• create orderers

• Git push

Follow Readme for detailed information.

create/peers

• Write the couchdb credentials to Vault

• Create Value files for Organization Peers

• Git Push

Follow Readme for detailed information.

create/storageclass

• Check if storage class created

• Ensures “component_type” dir exists

• Create Storage class for Orderer

• Create Storage class for Organizations

• Git push

Follow Readme for detailed information.

132 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/namespace_vaultauth
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/new_organization/create_block
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/orderers
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/peers
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/create/storageclass

Blockchain Automation Framework Documentation, Release 0.4.0

delete/flux_releases

• Deletes all the helmreleases CRD

• Remove all Helm releases

• Deletes namespaces

Follow Readme for detailed information.

delete/gitops_files

• Delete release files

• Git push

Follow Readme for detailed information.

delete/vault_secrets

• Delete docker creds

• Delete Ambassador creds

• Delete vault-auth path

• Delete Crypto for orderers

• Delete Crypto for peers

• Delete policy

Follow Readme for detailed information.

helm_component

• Ensures value directory exist

• Create value file

• Helm lint

Follow Readme for detailed information.

k8_component

• Ensures value directory exist

• Create value file

Follow Readme for detailed information.

setup/config_block/fetch

• Call nested_create_cli for the peer

• create valuefile for cli {{ peer.name }}-{{ participant.name }}-{{ channel_name }}

• Call nested_fetch_role for the peer

6.3. Ansible Roles and Playbooks 133

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/delete/flux_releases
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/delete/gitops_files
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/delete/vault_secrets
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/helm_component
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/k8_component

Blockchain Automation Framework Documentation, Release 0.4.0

• start cli

• fetch and copy the configuration block from the blockchain

• delete cli

Follow Readme for detailed information.

setup/config_block/sign_and_update

• Call valuefile when participant is new

• Check peer pod is up

• Call nested_sign_and_update for each peer

• create cli value files for {{peer.name}}-{{ org.name }} for signing the modified configuration block

• start cli {{peer.name}}-{{ org.name }}

• Check if fabric cli is present

• signing from the admin of {{ org.name }}

• delete cli {{ peer.name }}-{{ participant.name }}-cli

• Call nested_update_channel for the peer

• start cli for {{ peer.name }}-{{ org.name }} for updating the channel

• Check if fabric cli is present

• updating the channel with the new configuration block

• delete cli {{ peer.name }}-{{ participant.name }}-cli

Follow Readme for detailed information.

setup/get_ambassador_crypto

• Ensure ambassador secrets directory exists

• Save keys

• Save certs

• Ensure ambassador secrets directory exists

• Save keys

• Save certs

• signing from the admin of {{ org.name }}

• delete cli {{ peer.name }}-{{ participant.name }}-cli

• Call nested_update_channel for the peer

• start cli for {{ peer.name }}-{{ org.name }} for updating the channel

• Check if fabric cli is present

• updating the channel with the new configuration block

• delete cli {{ peer.name }}-{{ participant.name }}-cli

134 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/setup/config_block/fetch
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/setup/config_block/sign_and_update

Blockchain Automation Framework Documentation, Release 0.4.0

setup/get_crypto

• Ensure admincerts directory exists

• Save admincerts

• Ensure cacerts directory exists

• Save cacerts

• Ensure tlscacerts directory exists

• Save tlscacerts

Follow Readme for detailed information.

setup/vault_kubernetes

• Check if namespace is created

• Ensures build dir exists

• Check if Kubernetes-auth already created for Organization

• Enable and configure Kubernetes-auth for Organization

• Get Kubernetes cert files for organizations

• Write reviewer token for Organisations

• Check if policy exists

• Create policy for Orderer Access Control

• Create policy for Organisations Access Control

• Write policy for vault

• Create Vault auth role

• Check docker cred exists

• Create the docker pull credentials

Follow Readme for detailed information.

6.3.5 Indy Configurations

In the Blockchain Automation Framework project, ansible is used to automate the certificate generation, putting them
in vault and generate value files, which are then pushed to the repository for deployment, using GitOps. This is
achieved using Ansible playbooks. Ansible playbooks contains a series of roles and tasks which run in sequential
order to achieve the automation.

/hyperledger-indy
|-- charts
| |-- indy-auth-job
| |-- indy-cli
| |-- indy-domain-genesis
| |-- indy-domain-genesis
| |-- indy-key-mgmt
| |-- indy-ledger-txn
| |-- indy-node

(continues on next page)

6.3. Ansible Roles and Playbooks 135

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/setup/get_crypto
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-fabric/configuration/roles/setup/vault_kubernetes

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

| |-- indy-pool-genesis
|-- images
|-- configuration
| |-- roles/
| |-- samples/
| |-- playbook(s)
| |-- cleanup.yaml
|-- releases
| |-- dev/
|-- scripts
| |-- indy_nym_txn
| |-- setup indy cluster

For Hyperledger-Indy, the ansible roles and playbooks are located at /platforms/hyperledger-indy/
configuration/ Some of the common roles and playbooks between Hyperledger-Fabric, Hyperledger-Indy,
Hyperledger-Besu, R3 Corda and Quorum are located at /platforms/shared/configurations/

Roles for setting up Indy Network

Roles in ansible are a combination of logically inter-related tasks.

To deploy the indy network, run the deploy-network.yaml in blockchain-automation-framework\platforms\hyperledger-indy\configuration\
The roles included in the file are as follows.

check/crypto

This role is checking if all crypto jobs are completed and all crypto data are in Vault.

• Check if Indy Key management pod for trustee is completed

• Check if Indy Key management pod for stewards is completed

• Check if Indy Key management pod for endorser is completed

• Check trustee in vault

• Check stewards in vault

• Check endorser in vault

Follow Readme for detailed information.

check/k8_component

This role is used for waiting to kubernetes component.

• Wait for {{ component_type }} {{ component_name }}

• Wait for {{ component_type }} {{ component_name }}

• Wait for {{ component_type }} {{ component_name }}

• Get a ServiceAccount token for {{ component_name }}

• Store token

Follow Readme for detailed information.

136 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/check/crypto
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/check/k8_component

Blockchain Automation Framework Documentation, Release 0.4.0

check/validation

This role checks for validation of network.yaml

• Check Validation

– Counting Genesis Steward

– Set trustee count to zero

– Counting trustees per Org

– Print error and end playbook if trustee count limit fails

– Counting Endorsers

– Print error abd end playbook if endorser count limit fails

– Reset Endorser count

• Print error and end playbook if genesis steward count limit fails

• Print error and end playbook if total trustee count limit fails

Follow Readme for detailed information.

clean/flux

The role deletes the Helm release of Flux and git authentication secret from Kubernetes.

• Delete Helm release

• Wait for deleting of Helm release flux-{{ network.env.type }}

Follow Readme for detailed information.

clean/gitops

This role deletes all the gitops release files

• Delete release files

• Git push

Follow Readme for detailed information.

clean/k8s_resourses

The role deletes all running Kubernetes components and Helm releases of all organizations.

• Remove all Helm releases of organization {{ organization }}

• Get all existing Cluster Role Bindings of organization {{ organization }}

• Remove an existing Cluster Role Binding of {{ organization }}

• Remove an existing Namespace {{ organization_ns }}

• Remove an existing Storage Class of {{ organization }}

Follow Readme for detailed information.

6.3. Ansible Roles and Playbooks 137

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/check/validation
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/clean/flux
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/clean/gitops
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/clean/k8s_resourses

Blockchain Automation Framework Documentation, Release 0.4.0

clean/vault

This role get vault root token for organization and remove Indy crypto from vault

• Remove Indy Crypto of {{ organization }}

• Remove Policies of trustees

• Remove Policies of stewards

• Remove Policies of endorsers

• Remove Policies of {{ organization }}

• Remove Kubernetes Authentication Methods of {{ organization }}

• Remove Kubernetes Authentication Methods of {{ organization }} of trustees

• Remove Kubernetes Authentication Methods of {{ organization }} of stewards

• Remove Kubernetes Authentication Methods of {{ organization }} of endorsers

Follow Readme for detailed information.

copy/vault_crypto_values

This role copies the crypto from trustee to stewards for the same organization

• Transfer DID and Seed Values between Vaults

create/helm_component/auth_job

This role create the job value file for creating Vault auth methods

This role creates the job value file for stewards

• Ensures {{ release_dir }}/{{ component_type }}/{{ component_name }} dir exists

• Get the kubernetes server url

• Trustee vault policy and role generating

• Stewards vault policy and role generating

• Endorser vault policy and role generating

• baf-ac vault policy and role generating

Follow Readme for detailed information.

create/helm_component/crypto

This role create the job value file for creating Hyperledger Indy Crypto

This role creates the job value file for stewards

• Ensures {{ release_dir }}/{{ component_type }}/{{ component_name }} dir exists

• Trustee crypto generating

• Stewards crypto generating

138 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/clean/vault
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/create/helm_component/auth_job

Blockchain Automation Framework Documentation, Release 0.4.0

• Endorser crypto generating

Follow Readme for detailed information.

create/helm_component/domain_genesis

This role create the config map value file for storing domain genesis for Indy cluster.

This role creates the domain genesis file for organization

• Ensures {{ release_dir }}/{{ component_type }}/{{ component_name }} dir exists

• Generate domain genesis for organization

• create value file for {{ component_name }} {{ component_type }}

Follow Readme for detailed information.

create/helm_component/ledger_txn

This role create the job value file for Indy NYM ledger transactions

This role create the job value file for Indy NYM ledger transactions

• Ensures {{ release_dir }}/{{ component_type }}/{{ component_name }} dir exists

• Create HelmRelease file

– Ensures {{ release_dir }}/{{ component_type }}/{{ component_name }} dir exists

– Get identity data from vault

– Inserting file into Variable

– create value file for {{ new_component_name }} {{ component_type }}

– Delete file

– Helm lint

Follow Readme for detailed information.

create/helm_component/node

This role creates value file for Helm Release of stewards.

This role creates the job value file for stewards

• Ensures {{ release_dir }}/{{ component_name }} dir exists

• create value file for {{ component_name }} {{ component_type }}

Follow Readme for detailed information.

6.3. Ansible Roles and Playbooks 139

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/create/helm_component/crypto
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/create/helm_component/domain_genesis
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/create/helm_component/ledger_txn
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/create/helm_component/node

Blockchain Automation Framework Documentation, Release 0.4.0

create/helm_component/pool_genesis

This role creates the pool genesis file for organization

• Ensures {{ release_dir }}/{{ component_type }}/{{ component_name }} dir exists

• Generate pool genesis for organization

• create value file for {{ component_name }} {{ component_type }}

Follow Readme for detailed information.

create/imagepullsecret

This role creates secret in Kubernetes for pull docker images from repository.

This role creates the docker pull registry secret within each namespace

• Check for ImagePullSecret for {{ organization }}

• Create the docker pull registry secret for {{ component_ns }}

Follow Readme for detailed information.

create/k8_component

This role create value file for kubernetes component by inserted type.

This role generates value files for various k8 components

• Ensures {{ component_type_name }} dir exists

• create {{ component_type }} file for {{ component_type_name }}

Follow Readme for detailed information.

create/namespace

This role creates value files for namespaces of organizations

• Check namespace is created

• Create namespaces

• Git Push

Follow Readme for detailed information.

create/serviceaccount/by_identities

This role creates value files for service account

• Check if service account for {{ component_name }} exists

• Create service account for {{ component_name }}

• Check cluster role binding for {{ component_name }}

• Get component_name to var

140 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/create/helm_component/pool_genesis
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/create/imagepullsecret
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/create/k8_component
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/create/namespace

Blockchain Automation Framework Documentation, Release 0.4.0

• Get organization and admin string to var

• Create cluster role binding for {{ component_name }}

• Create admin cluster role binding for {{ component_name }}

Follow Readme for detailed information.

create/serviceaccount/main

This role creates value files for service account for vault

• Create service account for trustees [{{ organization }}]

• Create service account for stewards [{{ organization }}]

• Create service account for endorsers [{{ organization }}]

• Create service account for organization [{{ organization }}]

• Create service account for read only public crypto [{{ organization }}]

• Push the created deployment files to repository

• Waiting for trustees accounts and cluster binding roles

• Waiting for stewards accounts and cluster binding roles

• Waiting for endorsers accounts and cluster binding roles

• Waiting for organization accounts and cluster binding roles

• Waiting for organization read only account and cluster binding role

Follow Readme for detailed information.

create/serviceaccount/waiting

This role is waiting for create inserted ServiceAccounts or ClusterRoleBinding.

• Wait for creation for service account

• Wait for creation for cluster role binding

Follow Readme for detailed information.

create/storageclass

This role creates value files for storage class

• Check if storageclass exists

• Create storageclass

• Push the created deployment files to repository

• Wait for Storageclass creation for {{ component_name }}

Follow Readme for detailed information.

6.3. Ansible Roles and Playbooks 141

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/create/serviceaccount/by_identities
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/create/serviceaccount/main
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/create/serviceaccount/waiting
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/create/storageclass

Blockchain Automation Framework Documentation, Release 0.4.0

setup/auth_job

This role generates Helm releases of kubernetes jobs, which create Auth Methods into HashiCorp Vault for getting
Vault token by Kubernetes Service Accounts

• Wait for namespace creation for stewards

• Create auth_job of stewards, trustee and endorser

• Push the created deployment files to repository

• Check if auth job finished correctly

Follow Readme for detailed information.

setup/crypto

This role creates the deployment files for indy crypto generate job and pushes them to repository

• Wait for namespace creation for stewards

• Create image pull secret for stewards

• Create crypto of stewards, trustee and endorser

• Push the created deployment files to repository

• Check Vault for Indy crypto

Follow Readme for detailed information.

setup/domain_genesis

This role creates the values files for organizations domain genesis and pushes them to repository

• Create domain genesis

• Push the created deployment files to repository

• Wait until domain genesis configmap are created

Follow Readme for detailed information.

setup/endorsers

This role creates the deployment files for endorsers and pushes them to repository

• Wait for namespace creation

• Create image pull secret for identities

• Create Deployment files for Identities

– Select Admin Identity for Organisation {{ component_name }}

– Inserting file into Variable

– Calling Helm Release Development Role. . .

– Delete file

– Push the created deployment files to repository

• Wait until identities are creating

142 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/setup/auth_job
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/setup/crypto
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/setup/domain_genesis

Blockchain Automation Framework Documentation, Release 0.4.0

Follow Readme for detailed information.

setup/node

This role creates the deployment files for stewards and pushes them to repository

• Wait for namespace creation for stewards

• Create image pull secret for stewards

• Create steward deployment file

• Push the created deployment files to repository

• Wait until steward pods are running

Follow Readme for detailed information.

setup/pool_genesis

This role creates the values files for organizations domain genesis and pushes them to repository

• Create pool genesis

• Push the created deployment files to repository

• Wait until pool genesis configmap are created

Follow Readme for detailed information.

setup/trustee

This role creates the deployment files for adding new trustee to existing network

• Wait for namespace creation

• Create image pull secret for identities

• Create Deployment files for Identities

– Select Admin Identity for Organisation {{ component_name }}

– Inserting file into Variable

– Calling Helm Release Development Role. . .

– Delete file

– Push the created deployment files to repository

• Wait until identities are creating

Follow Readme for detailed information.

setup/vault_kubernetes

This role setups communication between the vault and kubernetes cluster and install neccessary configurations.

• Check namespace is created

• Ensures build dir exists

• Check if Kubernetes-auth already created for Organization

6.3. Ansible Roles and Playbooks 143

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/setup/endorsers
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/setup/node
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/setup/pool_genesis
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/setup/trustee

Blockchain Automation Framework Documentation, Release 0.4.0

• Enable and configure Kubernetes-auth for Organization

• Get Kubernetes cert files for organizations

• Write reviewer token for Organizations

• Check if policy exists

• Create policy for Access Control

• Write Policy to Vault

• Create Vault auth role

Follow Readme for detailed information.

6.3.6 Quorum Configurations

In the Blockchain Automation Framework project, ansible is used to automate the certificate generation, putting them
in vault and generate value files, which are then pushed to the repository for deployment, using GitOps. This is
achieved using Ansible playbooks. Ansible playbooks contains a series of roles and tasks which run in sequential
order to achieve the automation.

/quorum
|-- charts
| |-- node_constellation
| |-- node_tessera
|-- images
|-- configuration
| |-- roles/
| |-- samples/
| |-- deploy-network.yaml
|-- releases
| |-- dev/
|-- scripts

For Quorum, the ansible roles and playbooks are located at /platforms/quorum/configuration/ Some of
the common roles and playbooks between Hyperledger-Fabric, Hyperledger-Indy, Hyperledger-Besu, R3 Corda and
Quorum are located at /platforms/shared/configurations/

Roles for setting up a Quorum Network

Roles in ansible are a combination of logically inter-related tasks.

To deploy the quorum network, run the deploy-network.yaml in blockchain-automation-framework\platforms\quorum\configuration\
The roles included in the file are as follows:

**check/k8_component

This role checks for the k8s resources in the cluster

• Wait for {{ component_type }} {{ component_name }}

• Wait for {{ component_type }} {{ component_name }} Follow Readme for detailed information.

144 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/configuration/roles/setup/vault_kubernetes
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/create/check/k8_component

Blockchain Automation Framework Documentation, Release 0.4.0

**check/node_component

This role checks for the k8s resources in the cluster

• Wait for {{ component_type }} {{ component_name }}

• Wait for {{ component_type }} {{ component_name }} Follow Readme for detailed information.

create/certificates/ambassador

This role calls for ambassador certificate creation for each node.

• Create Ambassador certificates

• Ensure rootCA dir exists

• Ensure ambassador tls dir exists

• Check if certs already created

• Get root certs

• check root certs

• Generate CAroot certificate

• Check if ambassador tls already created

• Get ambassador tls certs

• Generate openssl conf file

• Generate ambassador tls certs

• Putting certs to vault

• Check Ambassador cred exists

• Create the Ambassador credentials Follow Readme for detailed information.

create/crypto/constellation

This role creates crypto for constellation.

• Create Crypto material for each node for constellation

• Check tm key is present the vault

• Create build directory

• Generate Crypto for constellation

• Copy the crypto into vault

Follow Readme for detailed information.

create/crypto/ibft

This role creates crypto for ibft.

• Create crypto material for each peer with IBFT consensus

• Check if nodekey already present in the vault

6.3. Ansible Roles and Playbooks 145

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/create/check/node_component
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/create/certificates/ambassador
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/create/crypto/constellation

Blockchain Automation Framework Documentation, Release 0.4.0

• Create build directory if it does not exist

• Generate enode url for each node and create a geth account and keystore

• Copy the crypto material to Vault

Follow Readme for detailed information.

create/crypto/raft

This role creates crypto for raft.

• Create crypto material for each peer with RAFT consensus

• Check if nodekey already present in the vault

• Create build directory if it does not exist

• Generate crypto for raft consensus

• Copy the crypto material to Vault

Follow Readme for detailed information.

create/crypto/tessera

This role creates crypto for tessera.

• Create tessera tm crypto material for each peer

• Check if tm key is already present in the vault

• Create build directory if it does not exist

• Check if tessera jar file exists

• Download tessera jar

• Generate node tm keys

• Copy the crypto material to Vault

Follow Readme for detailed information.

create/genesis_nodekey

This role creates genesis nodekey.

• Check if nodekey is present in vault

• Call nested check for each node

• Check if nodekey already present in the vault

• vault_check variable

• Fetching data of validator nodes in the network from network.yaml

• Get validator node data

• Create build directory if it does not exist

• Generate istanbul files

• Rename the directories created above with the elements of validator_node_list

146 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/create/crypto/ibft
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/create/crypto/raft
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/create/crypto/tessera

Blockchain Automation Framework Documentation, Release 0.4.0

• Delete the numbered directories

Follow Readme for detailed information.

create/k8_component

This role creates deployment files for nodes, namespace storageclass, service accounts and clusterrolebinding. De-
ployment file for a node is created in a directory with name=nodeName, nodeName is stored in component_name

• “Ensures {{ release_dir }}/{{ component_name }} dir exists”

• create {{ component_type }} file for {{ component_name }}

• Helm lint

Follow Readme for detailed information.

create/namespace_serviceaccount

This role creates the deployment files for namespaces, vault-auth, vault-reviewer and clusterrolebinding for each node

• Check if namespace exists

• Create namespace for {{ organisation }}

• Create vault auth service account for {{ organisation }}

• Create vault reviewer for {{ organisation }}

• Create clusterrolebinding for {{ organisation }}

• Push the created deployment files to repository

Follow Readme for detailed information.

create/storageclass

This role creates value files for storage class

• Check if storageclass exists

• Create storageclass

• Push the created deployment files to repository

• Wait for Storageclass creation for {{ component_name }}

Follow Readme for detailed information.

create/tessera

• Set enode_data_list to []

• Get enode data for each node of all organization

• Get enode data

• Check if enode is present in the build directory or not

• Create build directory if it does not exist

• Get the nodekey from vault and generate the enode

6.3. Ansible Roles and Playbooks 147

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/create/genesis_nodekey
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/create/k8_component
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/create/namespace_serviceaccount
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/create/storageclass

Blockchain Automation Framework Documentation, Release 0.4.0

• Get enode_data

• Get validator node data

• Git Push

Follow Readme for detailed information.

helm_component

This role generates the value file for the helm releases.

• Ensures {{ values_dir }}/{{ name }} dir exists

• create value file for {{ component_name }}

• Helm lint

Follow Readme for detailed information.

setup/bootnode

This role is used to setup bootnode.

• Check bootnode

• Check quorum repo dir exists

• Clone the git repo

• Make bootnode

• Create bin directory

• Copy bootnode binary to destination directory

Follow Readme for detailed information.

setup/constellation-node

This role is used to setup constellation-node.

• Register temporary directory

• check constellation

• Finding the release for os

• Release version

• Download the constellation-node binary

• Unarchive the file.

• Create the bin directory

• This task puts the constellation-node binary into the bin directory

Follow Readme for detailed information.

148 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/create/tessera
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/helm_component
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/setup/bootnode
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/setup/constellation-node

Blockchain Automation Framework Documentation, Release 0.4.0

setup/get_crypto

This role saves the crypto from Vault into ansible_provisioner.

• Ensure directory exists

• Save cert

• Save key

• Save root keychain

• Extracting root certificate from .jks

Follow Readme for detailed information.

setup/geth

This role setups geth.

• Check geth

• Check quorum repo dir exists

• Clone the git repo

• Make geth

• Create bin directory

• Copy geth binary to destination directory

Follow Readme for detailed information.

setup/golang

This role setups geth.

• Register temporary directory

• Check go

• Download golang tar

• Extract the Go tarball

• Create bin directory

• Copy go binary to destination directory

• Test go installation

Follow Readme for detailed information.

setup/istanbul

This role setups instanbul.

• Register temporary directory

• Check istanbul

• Clone the istanbul-tools git repo

6.3. Ansible Roles and Playbooks 149

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/setup/get_crypto
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/setup/geth
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/setup/golang

Blockchain Automation Framework Documentation, Release 0.4.0

• Make istanbul

• Create bin directory

• Copy istanbul binary to destination directory

Follow Readme for detailed information.

setup/vault_kubernetes

This role setups communication between the vault and kubernetes cluster and install neccessary configurations.

• Check namespace is created

• Ensures build dir exists

• Check if Kubernetes-auth already created for Organization

• Vault Auth enable for organisation

• Get Kubernetes cert files for organizations

• Write reviewer token

• Check if secret-path already created for Organization

• Create Vault secrets path

• Check if policy exists

• Create policy for Access Control

• Create Vault auth role

• Create the docker pull credentials

Follow Readme for detailed information.

delete/flux_releases

This role deletes the helm releases and uninstalls Flux

• Uninstall flux

• Delete the helmrelease for each peer

• Remove node helm releases

• Deletes namespaces

Follow Readme for detailed information.

delete/gitops_files

This role deletes all the gitops release files

• Delete release files

• Delete release files (namespaces)

• Git Push

Follow Readme for detailed information.

150 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/setup/istanbul
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/setup/vault_kubernetes
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/delete/flux_releases
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/delete/gitops_files

Blockchain Automation Framework Documentation, Release 0.4.0

delete/vault_secrets

This role deletes the Vault configurations

• Delete docker creds

• Delete Ambassador creds

• Delete vault-auth path

• Delete Crypto material

• Delete Access policies

Follow Readme for detailed information.

deploy-network.yaml

This playbook deploys a DLT/Blockchain network on existing Kubernetes clusters. The Kubernetes clusters should
already be created and the infomation to connect to the clusters be updated in the network.yaml file that is used as an
input to this playbook. It calls the following roles.

• create/namespace_serviceaccount

• create/storageclass

• setup/vault_kubernetes

• create/certificates/ambassador

• create/crypto/raft

• create/genesis_raft

• setup/istanbul

• create/genesis_nodekey

• create/crypto/ibft

• create/crypto/tessera

• create/crypto/constellation

• create/tessera

• create/constellation

reset-network.yaml

This playbook deletes the DLT/Blockchain network on existing Kubernetes clusters which has been created using
the Blockchain Automation Framework. It calls the following roles. THIS PLAYBOOK DELETES EVERYTHING,
EVEN NAMESPACES and FLUX.

• delete/vault_secrets

• delete/flux_releases

• delete/gitops_files

• Remove build directory

6.3. Ansible Roles and Playbooks 151

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/quorum/configuration/roles/delete/vault_secrets

Blockchain Automation Framework Documentation, Release 0.4.0

6.3.7 Hyperledger Besu Configurations

In the Blockchain Automation Framework project, ansible is used to automate the certificate generation, put them
in the vault and generate value files, which are then pushed to the repository for deployment, using GitOps. This is
achieved using Ansible playbooks. Ansible playbooks contains a series of roles and tasks which run in sequential
order to achieve the automation.

/hyperledger-besu
|-- charts
| |-- node_orion
|-- images
|-- configurations
| |-- roles/
| |-- samples/
| |-- deploy-network.yaml
|-- releases
| |-- dev/
|-- scripts

For Hyperledger Besu, the ansible roles and playbooks are located at /platforms/hyperledger-besu/
configuration/. Some of the common roles and playbooks between Hyperledger-Fabric, Hyperledger-Indy,
Hyperledger-Besu, R3 Corda and Quorum are located at /platforms/shared/configurations/

Roles for setting up a Hyperledger Besu Network

Roles in ansible are a combination of logically inter-related tasks.

To deploy the Hyperledger-Besu network, run the deploy-network.yaml in
blockchain-automation-framework\platforms\hyperledger-besu\configuration\ The
roles included in the files are as follows:

create/certificates/ambassador

This role calls for ambassador certificate creation for each node.

• Create Ambassador certificates

• Ensure rootCA dir exists

• Ensure ambassador tls dir exists

• Check if certs already created

• Get root certs

• check root certs

• Generate CAroot certificate

• Check if ambassador tls already created

• Get ambassador tls certs

• Generate openssl conf file

• Generate ambassador tls certs

• Putting certs to vault

152 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

• Check Ambassador cred exists

• Create the Ambassador credentials Follow Readme for detailed information.

create/crypto/ibft

This role creates crypto for ibft.

• Create crypto material for each peer with IBFT consensus

• Check if nodekey already present in the vault

• Create build directory if it does not exist

• Generate enode url for each node and create a geth account and keystore

• Copy the crypto material to Vault

Follow Readme for detailed information.

create/k8_component

This role creates deployment files for nodes, namespace storageclass, service accounts and clusterrolebinding. De-
ployment file for a node is created in a directory with name=nodeName, nodeName is stored in component_name

• “Ensures {{ release_dir }}/{{ component_name }} dir exists”

• create {{ component_type }} file for {{ component_name }}

• Helm lint

Follow Readme for detailed information.

create/namespace_serviceaccount

This role creates the deployment files for namespaces, vault-auth, vault-reviewer and clusterrolebinding for each node

• Check if namespace exists

• Create namespace for {{ organisation }}

• Create vault auth service account for {{ organisation }}

• Create vault reviewer for {{ organisation }}

• Create clusterrolebinding for {{ organisation }}

• Push the created deployment files to repository

Follow Readme for detailed information.

create/storageclass

This role creates value files for storage class

• Check if storageclass exists

• Create storageclass

• Push the created deployment files to repository

• Wait for Storageclass creation for {{ component_name }}

6.3. Ansible Roles and Playbooks 153

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-besu/configuration/roles/create/certificates/ambassador
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-besu/configuration/roles/create/crypto/ibft
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-besu/configuration/roles/create/k8_component
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-besu/configuration/roles/create/namespace_serviceaccount

Blockchain Automation Framework Documentation, Release 0.4.0

Follow Readme for detailed information.

setup/get_crypto

This role saves the crypto from Vault into ansible_provisioner.

• Ensure directory exists

• Save cert

• Save key

• Save root keychain

• Extracting root certificate from .jks

Follow Readme for detailed information.

setup/vault_kubernetes

This role setups communication between the vault and kubernetes cluster and install neccessary configurations.

• Check namespace is created

• Ensures build dir exists

• Check if Kubernetes-auth already created for Organization

• Vault Auth enable for organisation

• Get Kubernetes cert files for organizations

• Write reviewer token

• Check if secret-path already created for Organization

• Create Vault secrets path

• Check if policy exists

• Create policy for Access Control

• Create Vault auth role

• Create the docker pull credentials

Follow Readme for detailed information.

6.4 Helm Charts

6.4.1 Common Charts

6.4.2 Corda Charts

The structure below represents the Chart structure for R3 Corda components in the Blockchain Automation Framework
implementation.

154 Chapter 6. Developer Guide

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-besu/configuration/roles/create/storageclass
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-besu/configuration/roles/setup/get_crypto
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-besu/configuration/roles/setup/vault_kubernetes

Blockchain Automation Framework Documentation, Release 0.4.0

/r3-corda
|-- charts
| |-- doorman
| |-- doorman-tls
| |-- h2
| |-- h2-addUser
| |-- h2-password-change
| |-- mongodb
| |-- mongodb-tls
| |-- nms
| |-- nms-tls
| |-- node
| |-- node-initial-registration
| |-- notary
| |-- notary-initial-registration
| |-- storage

Pre-requisites

helm to be installed and configured on the cluster.

doorman

About

This folder consists of Doorman helm charts which are used by the ansible playbooks for the deployment of Doorman
component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/doorman
|-- templates
| |-- pvc.yaml
| |-- deployment.yaml
| |-- service.tpl
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for Doorman implementation.

• This folder contains following template files for Doorman implementation

6.4. Helm Charts 155

Blockchain Automation Framework Documentation, Release 0.4.0

– deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment for Doorman. The file basi-
cally describes the container and volume specifications of the Doorman. The file defines container where
doorman container is defined with corda image and corda jar details. The init container init-creds creates
doorman db root password and user credentials at mount path, init-certificates init container basically con-
figures doorman keys.jks by fetching certsecretprefix from the vault, change permissions init-containers
provides permissions to base directory and db-healthcheck init-container checks for db is up or not.

– pvc.yaml:

This yaml is used to create persistent volumes claim for the Doorman deployment.A persistentVolume-
Claim volume is used to mount a PersistentVolume into a Pod. PersistentVolumes provide a way for users
to ‘claim’ durable storage without having the information details of the particular cloud environment. This
file creates persistentVolumeClaim for Doorman pvc.

– service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment. This ser-
vice.yaml creates CA service endpoint. The file basically specifies service type and kind of service ports
for doorman server.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

doorman-tls

About

This folder consists of Doorman helm charts which are used by the ansible playbooks for the deployment of Doorman
component when TLS is on for the doorman. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/doorman-tls
|-- templates
| |-- pvc.yaml
| |-- deployment.yaml
| |-- service.tpl
|-- Chart.yaml
|-- values.yaml

156 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for Doorman implementation.

• This folder contains following template files for Doorman implementation

– deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment for Doorman. The file basi-
cally describes the container and volume specifications of the Doorman. The file defines container where
doorman container is defined with corda image and corda jar details. The init container init-creds creates
doorman db root password and user credentials at mount path, init-certificates init container basically con-
figures doorman keys.jks by fetching certsecretprefix from the vault, change permissions init-containers
provides permissions to base directory and db-healthcheck init-container checks if db is up or not.

– pvc.yaml:

This yaml is used to create persistent volumes claim for the Doorman deployment. A persistentVolume-
Claim volume is used to mount a PersistentVolume into a Pod. PersistentVolumes provide a way for users
to ‘claim’ durable storage without having the information details of the particular cloud environment. This
file creates persistentVolumeClaim for Doorman pvc.

– service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment. This ser-
vice.yaml creates CA service endpoint. The file basically specifies service type and kind of service ports
for doorman server.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

nms

About

This folder consists of networkmapservice helm charts which are used by the ansible playbooks for the deployment of
networkmapservice component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

6.4. Helm Charts 157

Blockchain Automation Framework Documentation, Release 0.4.0

/nms
|-- templates
| |-- volume.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for nms implementation.

• This folder contains following template files for nms implementation

– deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment for NMS . The file basically
describes the container and volume specifications of the NMS. The file defines containers where NMS
container is defined with corda image and corda jar details. The init container init-certificates-creds cre-
ates NMS db root password and user credentials at mount path, init-certificates init container basically
configures NMS keys.jks by fetching certsecretprefix from the vault, changepermissions init-containers
provides permissions to base directory and db-healthcheck init-container checks for db is up or not.

– service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment. This ser-
vice.yaml creates nms service endpoint. The file basically specifies service type and kind of service ports
for the nms server.

– volume.yaml:

This yaml is used to create persistent volumes claim for the nms deployment. A persistentVolumeClaim
volume is used to mount a PersistentVolume into a Pod. PersistentVolumes provide a way for users to
‘claim’ durable storage without having the information details of the particular cloud environment. This
file creates nms pvc for, the volume claim for nms.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

158 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

nms-tls

About

This folder consists of networkmapservice helm charts that establish a TLS connection with mongodb, which are used
by the ansible playbooks for the deployment of networkmapservice component. This chart is deployed when TLS is
on for nms. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/nms-tls
|-- templates
| |-- volume.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for nms implementation.

• This folder contains following template files for nms implementation

– deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment for NMS. The file basically
describes the container and volume specifications of the NMS. The file defines containers where NMS
container is defined with corda image and corda jar details. The init container init-certificates-creds cre-
ates NMS db root password and user credentials at mount path, init-certificates init container basically
configures NMS keys.jks by fetching certsecretprefix from the vault, changepermissions init-containers
provides permissions to base directory and db-healthcheck init-container checks for db is up or not.

– service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment. This ser-
vice.yaml creates nms service endpoint. The file basically specifies service type and kind of service ports
for the nms server.

– volume.yaml:

This yaml is used to create persistent volumes claim for the nms deployment. A persistentVolumeClaim
volume is used to mount a PersistentVolume into a Pod. PersistentVolumes provide a way for users to
‘claim’ durable storage without having the information details of the particular cloud environment. This
file creates nms pvc for, the volume claim for nms.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

6.4. Helm Charts 159

Blockchain Automation Framework Documentation, Release 0.4.0

values.yaml

• This file contains the default configuration values for the chart.

h2 (database)

About

This folder consists of H2 helm charts which are used by the ansible playbooks for the deployment of the H2 database.
The folder contains a templates folder, a chart file and a value file.

Folder Structure

/h2
|-- templates
| |-- pvc.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for H2 implementation.

• This folder contains following template files for H2 implementation

– deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment.For the H2 node, this file creates
H2 deployment.

– service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment. This ser-
vice.yaml creates H2 service endpoint

– pvc.yaml:

This yaml is used to create persistent volumes claim for the H2 deployment. A persistentVolumeClaim
volume is used to mount a PersistentVolume into a Pod. PersistentVolumes provide a way for users to
‘claim’ durable storage without having the information details of the particular cloud environment. This
file creates h2-pvc for , the volume claim for H2.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

160 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

values.yaml

• This file contains the default configuration values for the chart.

h2-addUser

About

This folder consists of H2-adduser helm charts which are used by the ansible playbooks for the deployment of the Peer
component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/h2-addUser
|-- templates
| |-- job.yaml
|-- Chart.yaml
|-- values.yaml

Pre-requisites

helm to be installed and configured

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for h2 add user implementation.

• This folder contains following template file for adding users to h2 implementation

– job.yaml:

The job.yaml file through template engine runs create h2-add-user container and thus runs newuser.sql to
create users and create passwords for new users.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

6.4. Helm Charts 161

Blockchain Automation Framework Documentation, Release 0.4.0

h2-password-change

About

This folder consists of H2-password-change helm charts which are used by the ansible playbooks for the deployment
of the Peer component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/h2-password-change
|-- templates
| |-- job.yaml
|-- Chart.yaml
|-- values.yaml

Pre-requisites

helm to be installed and configured

Charts description

templates

• This folder contains template structures which when combined with values ,will generate valid Kubernetes
manifest files for h2 password change implementation.

• This folder contains following template file for changing h2 password implementation

– job.yaml:

The job.yaml file through template engine runs create h2-add-user container and thus runs newuser.sql to
create users and create passwords for new users.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

mongodb

About

This folder consists of Mongodb helm charts which are used by the ansible playbooks for the deployment of the
Mongodb component. The folder contains a templates folder, a chart file and a value file.

162 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

Folder Structure

/mongodb
|-- templates
| |-- pvc.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for Mongodb implementation.

• This folder contains following template files for Mongodb implementation

– deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment.For the Mongodb node, this file
creates Mongodb deployment.

– service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment. This ser-
vice.yaml creates Mongodb service endpoint

– pvc.yaml:

This yaml is used to create persistent volumes claim for the Mongodb deployment. A persistentVolume-
Claim volume is used to mount a PersistentVolume into a Pod. PersistentVolumes provide a way for users
to ‘claim’ durable storage without having the information details of the particular cloud enviornment. This
file creates mongodb-pvc for, the volume claim for mongodb.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

mongodb-tls

About

This folder consists of Mongodb helm charts which are used by the ansible playbooks for the deployment of the
Mongodb component. It allows for TLS connection. When TLS is on for nms or doorman, this chart is deployed for
them else mongodb chart is deployed. The folder contains a templates folder, a chart file and a value file.

6.4. Helm Charts 163

Blockchain Automation Framework Documentation, Release 0.4.0

Folder Structure

/mongodb-tls
|-- templates
| |-- pvc.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for Mongodb implementation.

• This folder contains following template files for Mongodb implementation

– deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment.For the Mongodb node, this file
creates Mongodb deployment.

– service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment. This ser-
vice.yaml creates Mongodb service endpoint

– pvc.yaml:

This yaml is used to create persistent volumes claim for the Mongodb deployment. A persistentVolume-
Claim volume is used to mount a PersistentVolume into a Pod. PersistentVolumes provide a way for users
to ‘claim’ durable storage without having the information details of the particular cloud enviornment. This
file creates mongodb-pvc for, the volume claim for mongodb.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

node

About

This folder consists of node helm charts which are used by the ansible playbooks for the deployment of the corda node
component. The folder contains a templates folder, a chart file and a value file.

164 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

Folder Structure

/node
|-- templates
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for R3 Corda node implementation.

• This folder contains following template files for node implementation

– deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment. For the corda node, this file
creates a node deployment. The file defines containers where node container is defined with corda image
and corda jar details and corda-logs container is used for logging purpose. The init container init-nodeconf
defines node.conf file for node, init-certificates init container basically configures networkmap.crt, door-
man.crt, SSLKEYSTORE and TRUSTSTORE at mount path for node by fetching certsecretprefix from
the vault and init-healthcheck init-container checks for h2 database. Certificates and notary server database
are defined on the volume mount paths.

– service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment. This ser-
vice.yaml creates node service endpoint.The file basically specifies service type and kind of service ports
for the corda nodes.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

node-initial-registration

About

This folder contains node-initial-registration helm charts which are used by the ansible playbooks for the deployment
of the install_chaincode component. The folder contains a templates folder, a chart file and the corresponding value
file.

6.4. Helm Charts 165

Blockchain Automation Framework Documentation, Release 0.4.0

Folder Structure

/node-initial-registration
|-- templates
| |--job.yaml
| |--_helpers.tpl
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for node-initial-registration implementation.

• This folder contains following template files for node-initial-registration implementation

– job.yaml:It is used as a basic manifest for creating a Kubernetes deployment for initial node registration.
The file basically describes the container and volume specifications of the node. corda-node container
is used for running corda jar.store-certs-in-vault container is used for putting certificate into the vault.
init container is used for creating node.conf which is used by corda node, download corda jar, download
certificate from vault,getting passwords of keystore from vault and also performs health checks

– _helpers.tpl:A place to put template helpers that you can re-use throughout the chart.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

notary

About

This folder consists of Notary helm charts, which are used by the ansible playbooks for the deployment of the Notary
component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/notary
|-- templates
| |-- deployment.tpl
| |-- service.yaml

(continues on next page)

166 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for Notary implementation.

• This folder contains following template files for Notary implementation

– deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment. For the corda notary, this file
creates a notary deployment. The file defines containers where notary container is defined with corda
image and corda jar details also registers the notary with nms and corda-logs container is used for logging
purpose. The init container init-nodeconf defines node.conf file for notary, init-certificates init container
basically configures networkmap.crt, doorman.crt, SSLKEYSTORE and TRUSTSTORE at mount path by
fetching certsecretprefix from vault and db-healthcheck init-container checks for h2 database. Certificates
and notary server database are defined on the volume mount paths.

– service.yaml

This template is used as a basic manifest for creating a service endpoint for our deployment. This ser-
vice.yaml creates Notary service endpoint. The file basically specifies service type and kind of service
ports for Notary.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

notary-initial-registration

About

This folder consists of notary-initial-registration helm charts, which are used by the ansible playbooks for the deploy-
ment of the initial notary components. The folder contains a templates folder, a chart file and a corresponding value
file.

Folder Structure

6.4. Helm Charts 167

Blockchain Automation Framework Documentation, Release 0.4.0

/notary-initial-registration
|-- templates
| |--job.yaml
| |--_helpers.tpl
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for registering notary components.

• This folder contains following template files for initializing notary implementation.

– job.yaml:

It is used as a basic manifest for creating a Kubernetes deployment for initial notary registration. The file
basically describes the container and volume specifications of the notary. corda-node container is used for
running corda jar.store-certs-in-vault container is used for putting certificate into the vault. init container
is used for creating node.conf which is used by corda node, download corda jar, download certificate from
vault,getting passwords of keystore from vault and also performs health checks.

– _helpers.tpl:

A place to put template helpers that you can re-use throughout the chart.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

springbootwebserver

About

This folder consists of springbootwebserver helm charts which are used by the ansible playbooks for the deployment
of the springbootwebserver component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/springbootwebserver
|-- templates
| |-- deployment.yaml
| |-- pvc.yaml
| |-- service.yaml

(continues on next page)

168 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for springbootwebserver implementation.

• This folder contains following template files for springbootwebserver implementation

– deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment. For the corda springbootweb-
server, this file creates a springbootwebserver deployment. The file defines containers where spring-
bootwebserver container is defined with corda image and app jar details and the init container basically
creates app.properties file, configures the vault with various vault parameters. Certificates and spring-
bootwebserver database are defined on the volume mount paths.

– pvc.yaml:

This yaml is used to create persistent volumes claim for the springbootwebserver deployment. A persis-
tentVolumeClaim volume is used to mount a PersistentVolume into a Pod. PersistentVolumes provide a
way for users to ‘claim’ durable storage without having the information details of the particular cloud
enviornment. This file creates springbootwebserver-pvc for , the volume claim for springbootwebserver.

– service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment. This ser-
vice.yaml creates springbootwebserver service endpoint.The file basically specifies service type and kind
of service ports for the corda springbootwebserver.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

storage

About

This folder consists of storage helm charts, which are used by the ansible playbooks for the deployment of the storage
component. The folder contains a templates folder, a chart file and a value file.

6.4. Helm Charts 169

Blockchain Automation Framework Documentation, Release 0.4.0

Folder Structure

/storage
|-- templates
| |-- storageclass.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for storageclass implementation.

• This folder contains following template files for storageclass implementation

– storageclass.yaml: This yaml file basically creates storageclass. We define provisioner, storagename and
namespace from value file.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

webserver Chart

About

This folder consists of webserver helm charts which are used by the ansible playbooks for the deployment of the
webserver component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/webserver
|-- templates
| |-- pvc.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

170 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for webserver implementation.

• This folder contains following template files for webserver implementation

– deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment. For the webserver node, this
file creates webserver deployment.

– service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment. This ser-
vice.yaml creates webserver service endpoint

– pvc.yaml:

This yaml is used to create persistent volumes claim for the webserver deployment. A persistentVolume-
Claim volume is used to mount a PersistentVolume into a Pod. PersistentVolumes provide a way for users
to ‘claim’ durable storage without having the information details of the particular cloud enviornment. This
file creates webserver-pvc for, the volume claim for webserver.

– volume.yaml:

This yaml is used to create persistent volumes claim for the webserver deployment. A persistentVolume-
Claim volume is used to mount a PersistentVolume into a Pod. PersistentVolumes provide a way for users
to ‘claim’ durable storage without having the information details of the particular cloud environment. This
file creates webserver pvc for, the volume claim for webserver.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

6.4.3 Corda Enterprise Helm Charts

Following are the helm charts used for R3 Corda Enterprise in Blockchain Automation Framework.

platforms/r3-corda-ent/charts
bridge
float
generate-pki
h2
idman
nmap
node
node-initial-registration
notary

(continues on next page)

6.4. Helm Charts 171

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

notary-initial-registration
signer

Pre-requisites

helm version 2.x.x to be installed and configured on the cluster.

Bridge

About

This chart deploys the Bridge component of Corda Enterprise filewall. The folder contents are below:

Folder Structure

bridge
Chart.yaml
files

firewall.conf
templates

configmap.yaml
deployment.yaml
_helpers.tpl
pvc.yaml
service.yaml

values.yaml

Charts description

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

files

• This folder contains the configuration files needed for bridge.

– firewall.conf: The main configuration file for firewall.

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for Corda Firewall implementation. This folder contains following template files:

– configmap.yaml: This creates a configmap of all the files from the files folder above.

172 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

– deployment.yaml: This creates the main Kubernetes deployment. It contains one init-container
init-certificates to download the keys/certs from Vault, and one main containers which exe-
cutes the firewall service.

– _helpers.tpl: This is a helper file to add any custom labels.

– pvc.yaml: This creates the PVC used by firwall

– service.yaml: This creates the firewall service endpoint.

values.yaml

• This file contains the default values for the chart.

Float

About

This chart deploys the Float component of Corda Enterprise filewall. The folder contents are below:

Folder Structure

float
Chart.yaml
files

firewall.conf
templates

configmap.yaml
deployment.yaml
_helpers.tpl
pvc.yaml
service.yaml

values.yaml

Charts description

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

files

• This folder contains the configuration files needed for float.

– firewall.conf: The main configuration file for firewall.

6.4. Helm Charts 173

Blockchain Automation Framework Documentation, Release 0.4.0

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for Corda Firewall implementation. This folder contains following template files:

– configmap.yaml: This creates a configmap of all the files from the files folder above.

– deployment.yaml: This creates the main Kubernetes deployment. It contains one init-container
init-certificates to download the keys/certs from Vault, and one main containers which exe-
cutes the firewall service.

– _helpers.tpl: This is a helper file to add any custom labels.

– pvc.yaml: This creates the PVC used by firwall

– service.yaml: This creates the firewall service endpoint.

values.yaml

• This file contains the default values for the chart.

Generate-pki

About

This chart deploys the Generate-PKI job on Kubernetes. The folder contents are below:

Folder Structure

generate-pki
Chart.yaml
files

pki.conf
README.md
templates

configmap.yaml
_helpers.tpl
job.yaml

values.yaml

Charts description

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

174 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

files

• This folder contains the configuration files needed for PKI.

– pki.conf: The main configuration file for generate-pki.

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for PKI job. This folder contains following template files:

– configmap.yaml: This creates a configmap of all the files from the files folder above.

– _helpers.tpl: This is a helper file to add any custom labels.

– job.yaml: This creates the main Kubernetes job. It contains a main container which runs the pkitool to
generate the certificates and keystores, and a store-certs container to upload the certificates/keystores
to Vault.

values.yaml

• This file contains the default values for the chart.

h2 (database)

About

This chart deploys the H2 database pod on Kubernetes. The folder contents are below:

Folder Structure

h2
Chart.yaml
templates

deployment.yaml
pvc.yaml
service.yaml

values.yaml

Charts description

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc

6.4. Helm Charts 175

Blockchain Automation Framework Documentation, Release 0.4.0

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for H2 implementation. This folder contains following template files:

– deployment.yaml: This file is used as a basic manifest for creating a Kubernetes deployment. For the H2
node, this file creates H2 pod.

– pvc.yaml: This yaml is used to create persistent volumes claim for the H2 deployment. This file creates
h2-pvc for, the volume claim for H2.

– service.yaml: This template is used as a basic manifest for creating a service endpoint for our deployment.
This service.yaml creates H2 service endpoint.

values.yaml

• This file contains the default configuration values for the chart.

idman

About

This chart deploys the Idman component of Corda CENM. The folder contents are below:

Folder Structure

idman
Chart.yaml
files

idman.conf
run.sh

templates
configmap.yaml
deployment.yaml
_helpers.tpl
pvc.yaml
service.yaml

values.yaml

Charts description

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

176 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

files

• This folder contains the configuration files needed for idman.

– idman.conf: The main configuration file for idman.

– run.sh: The executable file to run the idman service in the kubernetes pod.

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for Idman implementation. This folder contains following template files:

– configmap.yaml: This creates a configmap of all the files from the files folder above.

– deployment.yaml: This creates the main Kubernetes deployment. It contains one init-container
init-certificates to download the keys/certs from Vault, and two main containers: idman and
logs.

– _helpers.tpl: This is a helper file to add any custom labels.

– pvc.yaml: This creates the PVCs used by idman: one for logs and one for the file H2 database.

– service.yaml: This creates the idman service endpoint with Ambassador proxy configurations.

values.yaml

• This file contains the default values for the chart.

nmap

About

This chart deploys the NetworkMap component of Corda CENM. The folder contents are below:

Folder Structure

nmap
Chart.yaml
files

nmap.conf
run.sh
set-network-parameters.sh

templates
configmap.yaml
deployment.yaml
_helpers.tpl
pvc.yaml
service.yaml

values.yaml

6.4. Helm Charts 177

Blockchain Automation Framework Documentation, Release 0.4.0

Charts description

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

files

• This folder contains the configuration files needed for nmap.

– nmap.conf: The main configuration file for nmap.

– run.sh: The executable file to run the nmap service in the kubernetes pod.

– set-network-parameters.sh: This executable file which creates the initial network-parameters.

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for NetworkMap implementation. This folder contains following template files:

– configmap.yaml: This creates a configmap of all the files from the files folder above.

– deployment.yaml: This creates the main Kubernetes deployment. It contains a init-container
init-certificates to download the keys/certs from Vault, a setnparam container to set the
network-parameters, and two main containers: main and logs.

– _helpers.tpl: This is a helper file to add any custom labels.

– pvc.yaml: This creates the PVCs used by nmap: one for logs and one for the file H2 database.

– service.yaml: This creates the nmap service endpoint with Ambassador proxy configurations.

values.yaml

• This file contains the default values for the chart.

node

About

This chart deploys the Node component of Corda Enterprise. The folder contents are below:

Folder Structure

node
Chart.yaml
files

node.conf
run.sh

(continues on next page)

178 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

(continued from previous page)

templates
configmap.yaml
deployment.yaml
_helpers.tpl
pvc.yaml
service.yaml

values.yaml

Charts description

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

files

• This folder contains the configuration files needed for Corda node.

– node.conf: The main configuration file for node.

– run.sh: The executable file to run the node service in the kubernetes pod.

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for Corda Node implementation. This folder contains following template files:

– configmap.yaml: This creates a configmap of all the files from the files folder above.

– deployment.yaml: This creates the main Kubernetes deployment. It contains three init-
containers: init-check-registration to check if node-initial-registration was completed,
init-certificates to download the keys/certs from Vault, and a db-healthcheck container
to check if the database service is reachable, and two main containers: node and logs.

– _helpers.tpl: This is a helper file to add any custom labels.

– pvc.yaml: This creates the PVC used by the node.

– service.yaml: This creates the node service endpoint with Ambassador proxy configurations.

values.yaml

• This file contains the default values for the chart.

node-initial-registration

About

This chart deploys the Node-Registration job for Corda Enterprise. The folder contents are below:

6.4. Helm Charts 179

Blockchain Automation Framework Documentation, Release 0.4.0

Folder Structure

node-initial-registration
Chart.yaml
files

node.conf
node-initial-registration.sh

templates
configmap.yaml
_helpers.tpl
job.yaml

values.yaml

Charts description

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

files

• This folder contains the configuration files needed for Corda node.

– node.conf: The main configuration file for node.

– node-initial-registration.sh: The executable file to run the node initial-registration.

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for registration job. This folder contains following template files:

– configmap.yaml: This creates a configmap of all the files from the files folder above.

– _helpers.tpl: This is a helper file to add any custom labels.

– job.yaml: This creates the main Kubernetes job. It contains two init-containers: init-certificates
to download the keys/certs from Vault, and a db-healthcheck container to check if the database
service is reachable, and two main containers: registration for the actual registration and
store-certs to upload the certificates to Vault.

values.yaml

• This file contains the default values for the chart.

notary

About

This chart deploys the Notary component of Corda Enterprise. The folder contents are below:

180 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

Folder Structure

notary
Chart.yaml
files

notary.conf
run.sh

templates
configmap.yaml
deployment.yaml
_helpers.tpl
pvc.yaml
service.yaml

values.yaml

Charts description

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

files

• This folder contains the configuration files needed for Corda Notary.

– notary.conf: The main configuration file for notary.

– run.sh: The executable file to run the notary service in the kubernetes pod.

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for Corda Notary implementation. This folder contains following template files:

– configmap.yaml: This creates a configmap of all the files from the files folder above.

– deployment.yaml: This creates the main Kubernetes deployment. It contains three init-
containers: init-check-registration to check if notary-initial-registration was completed,
init-certificates to download the keys/certs from Vault, and a db-healthcheck container
to check if the database service is reachable, and two main containers: notary and logs.

– _helpers.tpl: This is a helper file to add any custom labels.

– pvc.yaml: This creates the PVC used by the notary.

– service.yaml: This creates the notary service endpoint with Ambassador proxy configurations.

values.yaml

• This file contains the default values for the chart.

6.4. Helm Charts 181

Blockchain Automation Framework Documentation, Release 0.4.0

notary-initial-registration

About

This chart deploys the Notary-Registration job for Corda Enterprise. The folder contents are below:

Folder Structure

notary-initial-registration
Chart.yaml
files

create-network-parameters-file.sh
notary.conf
notary-initial-registration.sh

templates
configmap.yaml
_helpers.tpl
job.yaml

values.yaml

Charts description

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

files

• This folder contains the configuration files needed for Corda Notary.

– create-network-parameters-file.sh: Creates the network parameters file.

– notary.conf: The main configuration file for notary.

– notary-initial-registration.sh: The executable file to run the notary initial-registration.

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for Notary registration job. This folder contains following template files:

– configmap.yaml: This creates a configmap of all the files from the files folder above.

– _helpers.tpl: This is a helper file to add any custom labels.

– job.yaml: This creates the main Kubernetes job. It contains two init-containers: init-certificates
to download the keys/certs from Vault, and a db-healthcheck container to check if the database
service is reachable, and two main containers: registration for the actual registration and
store-certs to upload the certificates to Vault.

182 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

values.yaml

• This file contains the default values for the chart.

signer

About

This chart deploys the Signer component of Corda CENM. The folder contents are below:

Folder Structure

signer
Chart.yaml
files

signer.conf
README.md
templates

configmap.yaml
deployment.yaml
_helpers.tpl
service.yaml

values.yaml

Charts description

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

files

• This folder contains the configuration files needed for signer.

– signer.conf: The main configuration file for signer.

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for Signer implementation. This folder contains following template files:

– configmap.yaml: This creates a configmap of all the files from the files folder above.

– deployment.yaml: This creates the main Kubernetes deployment. It contains two init-containers:
init-check-certificates to check if the signer certificates are saved on Vault and
init-certificates to download the keys/certs from Vault, and two main containers: signer and
logs.

– _helpers.tpl: This is a helper file to add any custom labels.

6.4. Helm Charts 183

Blockchain Automation Framework Documentation, Release 0.4.0

– service.yaml: This creates the signer service endpoint.

values.yaml

• This file contains the default values for the chart.

6.4.4 Hyperledger Fabric Charts

The structure below represents the Chart structure for Hyperledger fabric components in the Blockchain Automation
Framework implementation.

/hyperledger-fabric
|-- charts
| |-- ca
| |-- catools
| |-- create_channel
| |-- fabric_cli
| |-- install_chaincode
| |-- instantiate_chaincode
| |-- join_channel
| |-- orderernode
| |-- peernode
| |-- upgrade_chaincode
| |-- verify_chaincode
| |-- zkkafka

Pre-requisites

helm to be installed and configured on the cluster.

CA (certification authority)

About

This folder consists CA helm charts which are used by the ansible playbooks for the deployment of the CA component.
The folder contains a templates folder, a chart file and a value file.

Folder Structure

/ca
|-- templates
| |-- _helpers.tpl
| |-- volumes.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

184 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for CA implementation.

• This folder contains following template files for CA implementation

– _helpers.tpl

This file doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to
put template helpers that we can re-use throughout the chart. That file is the default location for template
partials, as we have defined a template to encapsulate a Kubernetes block of labels for CA.

– deployment.yaml

This file is used as a basic manifest for creating a Kubernetes deployment. For the CA node, this file
creates a CA deployment. The file defines where CA container is defined with fabric image and CA client
and CA server onfiguration details and the init container basically configures the vault with various vault
parameters. Certificates and CA server database are defined on the volume mount paths.

– service.yaml

This template is used as a basic manifest for creating a service endpoint for our deployment. This ser-
vice.yaml creates CA service endpoint. The file basically specifies service type and kind of service ports
for the CA client and CA server.

– volume.yaml

This yaml is used to create persistent volumes claim for the CA deployment. A persistentVolumeClaim
volume is used to mount a PersistentVolume into a Pod. PersistentVolumes provide a way for users to
‘claim’ durable storage without having the information details of the particular cloud environment. This
file creates CA pvc for, the volume claim for CA.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name etc.

values.yaml

• This file contains the default configuration values for the chart.

CA tools

About

This folder consists CA tools helm charts which are used by the ansible playbooks for the deployment of the CA tools
component. The folder contains a templates folder, a chart file and a value file.

6.4. Helm Charts 185

Blockchain Automation Framework Documentation, Release 0.4.0

Folder Structure

/catools
|-- templates
| |-- volumes.yaml
| |-- deployment.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for CA tools implementation.

• This folder contains following template files for CA tools implementation

– deployment.yaml

This file is used as a basic manifest for creating a Kubernetes deployment for CA tools. The file basically
describes the container and volume specifications of the CA tools

– volume.yaml

This yaml is used to create persistent volumes claim for the Orderer deployment. A persistentVolumeClaim
volume is used to mount a PersistentVolume into a Pod. PersistentVolumes provide a way for users to
‘claim’ durable storage without having the information details of the particular cloud environment. This
file creates two persistentVolumeClaims, one for CA tools pvc and the other to store crypto config in the
ca-tools-crypto-pvc persistent volume.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name etc.

values.yaml

• This file contains the default configuration values for the chart.

Create channel

About

This folder consists of create_channel helm charts which are used by the ansible playbooks for the deployment of the
create_channel component. The folder contains a templates folder, a chart file and a value file.

186 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

Folder Structure

/create_channel
|-- templates
| |--_helpers.tpl
| |-- create_channel.yaml
| |-- configmap.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for Peer implementation.

• This folder contains following template files for peer implementation

– _helpers.tpl

This file doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to
put template helpers that we can re-use throughout the chart. That file is the default location for template
partials, as we have defined a template to encapsulate a Kubernetes block of labels for channels.

– configmap.yaml

The configmap.yaml file through template engine generate configmaps. In Kubernetes, a ConfigMap is a
container for storing configuration data. Things like pods can access the data in a ConfigMap. The con-
figmap.yaml file creates two configmaps namely genesis-block-peer and peer-config. For Create_channel
component, it creates two configmaps, one for the channel creation having various data fields such as
channel, peer and orderer details, and another for the generation of channel artifacts containing the chan-
nel transaction (channeltx) block and other labels.

– create_channel.yaml

This file creates channel creation job where in the createchannel container the create channel peer com-
mands are fired based on checking the results obtained from fetching channeltx block to see if channel
has already been created or not. Additionally, the commands are fired based on the tls status whether it is
enabled or not. The init container is used to setup vault configurations, and certificates are obtained from
the volume mount paths.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name etc.

values.yaml

• This file contains the default configuration values for the chart.

6.4. Helm Charts 187

Blockchain Automation Framework Documentation, Release 0.4.0

Install Chaincode

About

This folder consists of install_chaincode helm charts which are used by the ansible playbooks for the deployment of
the install_chaincode component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/install_chaincode
|-- templates
| |--_helpers.tpl
| |-- install_chaincode.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for install_chaincode implementation.

• This folder contains following template files for install_chaincode implementation

– _helpers.tpl

This fie doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to
put template helpers that we can re-use throughout the chart. This file is the default location for template
partials, as we have defined a template to encapsulate a Kubernetes block of labels for install_chaincodes.

– install_chaincode.yaml

This yaml file basically creates a job for the installation of chaincode. We define containers where fab-
rictools image is pulled and chaincode install peer commands are fired. Moreover, the chart provides the
environment requirements such as docker endpoint, peer and orderer related information, volume mounts,
etc for the chaincode to be installed. The init container basically configures the vault with various vault
parameters.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

188 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

Instantiate Chaincode

About

This folder consists instantiate_chaincode helm charts, which are used by the ansible playbooks for the deployment of
the instantiate_chaincode component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/instantiate_chaincode
|-- templates
| |--_helpers.tpl
| |-- instantiate_chaincode.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for instantiate_chaincode implementation.

• This folder contains following template files for instantiate_chaincode implementation

– _helpers.tpl

This file doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to put
template helpers that we can re-use throughout the chart. This file is the default location for template par-
tials, as we have defined a template to encapsulate a Kubernetes block of labels for instantiate_chaincodes.

– instantiate_chaincode.yaml

This yaml file basically creates a job for the instantiation of chaincode. We define containers where fab-
rictools image is pulled and based on the endorsement policies set, chaincode instantiate peer commands
are fired. Moreover, the chart provides the environment requirements such as docker endpoint, peer and
orderer related information, volume mounts, etc for the chaincode to be instantiated. The init container
basically configures the vault with various vault parameter.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

6.4. Helm Charts 189

Blockchain Automation Framework Documentation, Release 0.4.0

Join channel

About

This folder consists join_channel helm charts which are used by the ansible playbooks for the deployment of the
join_channel component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/join_channel
|-- templates
| |--_helpers.tpl
| |-- join_channel.yaml
| |-- configmap.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which, when combined with values, will generate valid Kubernetes
manifest files for Peer implementation.

• This folder contains following template files for peer implementation

– _helpers.tpl

This file doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to
put template helpers that we can re-use throughout the chart. That file is the default location for template
partials, as we have defined a template to encapsulate a Kubernetes block of labels for peers.

– configmap.yaml

The configmap.yaml file through template engine generate configmaps. In Kubernetes, a ConfigMap is
a container for storing configuration data. Things like pods, can access the data in a ConfigMap. The
configmap.yaml file creates two configmaps namely genesis-block-peer and peer-config. For join_channel
component, it creates two configmaps, one for the channel creation having various data fields such as
channel, peer and orderer details, and another for the generation of channel artifacts containing the channel
transaction (channeltx) block and other labels.

– join_channel.yaml

This file creates channel join job where in the joinchannel container the commands are fired based on the
tls status whether it is enabled or not wherein first the channel config is fetched and then the peers join
the created channel. The init container is used to setup vault configurations. And certificates are obatined
from the volume mount paths.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

190 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

values.yaml

• This file contains the default configuration values for the chart.

Orderer Chart

About

This folder consists Orderer helm charts which are used by the ansible playbooks for the deployment of the Orderer
component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/Orderernode
|-- templates
| |--_helpers.tpl
| |-- volumes.yaml
| |-- deployment.yaml
| |-- service.yaml
| |-- configmap.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values ,will generate valid Kubernetes
manifest files for Orderer implementation.

• This folder contains following template files for Orderer implementation

– _helpers.tpl

This fie doesnt output a Kubernetes manifest file as it begins with underscore (_) .And its a place to put
template helpers that we can re-use throughout the chart. That file is the default location for template
partials ,as we have defined a template to encapsulate a Kubernetes block of labels for Orderers.

– configmap.yaml

The configmap.yaml file through template engine generate configmaps.In Kubernetes, a ConfigMap is
a container for storing configuration data.Things like pods, can access the data in a ConfigMap. The
configmap.yaml file creates two configmaps namely genesis-block-orderer and orderer-config.

– deployment.yaml

This file is used as a basic manifest for creating a Kubernetes deployment.For the Orderer node, this file
creates orderer deployment.

– service.yaml

This template is used as a basic manifest for creating a service endpoint for our deployment.This ser-
vice.yaml creates orderer service endpoint

6.4. Helm Charts 191

Blockchain Automation Framework Documentation, Release 0.4.0

– volume.yaml

This yaml is used to create persistent volumes claim for the Orderer deployment.A persistentVolumeClaim
volume is used to mount a PersistentVolume into a Pod. PersistentVolumes provide a way for users to
‘claim’ durable storage without having the information details of the particular cloud environment. This
file creates orderer-pvc for , the volume claim for Orderer.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

Peer Chart

About

This folder consists Peer helm charts which are used by the ansible playbooks for the deployment of the Peer compo-
nent. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/peernode
|-- templates
| |--_helpers.tpl
| |-- volumes.yaml
| |-- deployment.yaml
| |-- service.yaml
| |-- configmap.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for Peer implementation.

• This folder contains following template files for peer implementation

– _helpers.tpl

This file doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to
put template helpers that we can re-use throughout the chart. That file is the default location for template
partials, as we have defined a template to encapsulate a Kubernetes block of labels for peers.

192 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

– configmap.yaml

The configmap.yaml file through template engine generate configmaps. In Kubernetes, a ConfigMap is
a container for storing configuration data. Things like pods can access the data in a ConfigMap. The
configmap.yaml file creates two configmaps namely genesis-block-peer and peer-config.

– service.yaml

This template is used as a basic manifest for creating a service endpoint for our deployment. This ser-
vice.yaml creates peer service endpoint.

– volume.yaml

This yaml is used to create persistent volumes claim for the peer deployment. A persistentVolumeClaim
volume is used to mount a PersistentVolume into a Pod. PersistentVolumes provide a way for users to
‘claim’ durable storage without having the information details of the particular cloud environment. This
file creates peer-pvc for the volume claim for peer.

– deployment.yaml

This file is used as a basic manifest for creating a Kubernetes deployment. For the peer node, this file
creates three deployments namely ca, ca-tools and peer.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

Upgrade Chaincode

About

This folder consists of upgrade_chaincode helm charts, which are used by the ansible playbooks for the deployment
of the upgrade_chaincode component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/upgrade_chaincode
|-- templates
| |--_helpers.tpl
| |-- upgrade_chaincode.yaml
|-- Chart.yaml
|-- values.yaml

6.4. Helm Charts 193

Blockchain Automation Framework Documentation, Release 0.4.0

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for upgrade_chaincode implementation.

• This folder contains following template files for upgrade_chaincode implementation

– _helpers.tpl

This file doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to
put template helpers that we can re-use throughout the chart. This file is the default location for template
partials, as we have defined a template to encapsulate a Kubernetes block of labels for upgrade_chaincodes.

– upgrade_chaincode.yaml

This yaml file basically creates a job for the upgradation of chaincode. We define containers where fab-
rictools image is pulled and based on the endorsement policies set, chaincode upgrade peer commands
are fired. Moreover, the chart provides the environment requirements such as docker endpoint, peer and
orderer related information, volume mounts, channel information, etc, for the chaincode to be upgraded.
The init container basically configures the vault with various vault parameter.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion ,name etc.

values.yaml

• This file contains the default configuration values for the chart.

zkkafka

About

This folder consists zkkafka helm charts which are used by the ansible playbooks for the deployment of the zkkafka
component. The folder contains a templates folder,a chart file and a value file.

Folder Structure

/zkkafka
|-- templates
| |--_helpers.tpl
| |-- volumes.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

194 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for zkkafka implementation.

• This folder contains following template files for zkkafka implementation

– _helpers.tpl

This file doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to
put template helpers that we can re-use throughout the chart. That file is the default location for template
partials, as we have defined a template to encapsulate a Kubernetes block of labels for zkkafkas.

– deployment.yaml

This file is used as a basic manifest for creating a Kubernetes deployment.For the zkkafka node, this file
creates zkkafka deployment.

– service.yaml

This template is used as a basic manifest for creating a service endpoint for our deployment. This ser-
vice.yaml creates zkkafka service endpoint

– volume.yaml

This yaml is used to create persistent volumes claim for the zkkafka deployment. A persistentVolumeClaim
volume is used to mount a PersistentVolume into a Pod. PersistentVolumes provide a way for users to
‘claim’ durable storage without having the information details of the particular cloud environment. This
file creates zkkafka pvc for the volume claim for zkkafka.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

6.4.5 Indy Charts

The structure below represents the Chart structure for Hyperledger Indy components in the Blockchain Automation
Framework implementation.

/hyperledger-indy
|-- charts
| |-- indy-auth-job
| |-- indy-cli
| |-- indy-domain-genesis
| |-- indy-key-mgmt
| |-- indy-ledger-txn
| |-- indy-node
| |-- indy-pool-genesis

6.4. Helm Charts 195

Blockchain Automation Framework Documentation, Release 0.4.0

Pre-requisites

helm to be installed and configured on the cluster.

Indy-Auth-Job

About

This chart is using admin auth to generate auth. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/indy-auth-job
|-- templates
| |-- job.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which when combined with values, will generate valid Kubernetes
manifest files for auth job implementation.

• This folder contains following template files for auth job implementation

– Job.yaml

This job uses admin auth to generate auth read only methods, policies and roles for stewards, so they have
the right they need to work.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

Indy-Domain-Genesis

About

This folder consists of domain genesis helm chart which is used to generate the domain genesis for indy network.

196 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

Folder Structure

/indy-domain-genesis
|-- templates
| |-- configmap.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This chart is used to generate the domain genesis.

– configmap.yaml

The ConfigMap API resource provides mechanisms to inject containers with configuration data while
keeping containers agnostic of Kubernetes. Here it is used to store Domain Genesis Data.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

Indy Key Management

About

This folder consists indy-key-management helm charts which are used by the ansible playbooks for the generation of
indy crypto material. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/indy-key-management
|-- templates
| |-- job.yaml
|-- Chart.yaml
|-- values.yaml

6.4. Helm Charts 197

Blockchain Automation Framework Documentation, Release 0.4.0

Charts description

templates

• This folder contains template structures which, when combined with values, will generate crypto material for
Indy.

• This folder contains following template files for peer implementation

– job.yaml

This job is used to generate crypto and save into vault.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

Indy Ledger Txn

About

This folder contains helm chart which is used to run Indy Ledger Transaction Script.

Folder Structure

/indy-ledger-txn
|-- templates
| |-- job.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which, when combined with values, will generate valid Kubernetes
manifest files for ledger NYM transaction implementation.

• This folder contains following template files for indy-ledger NYM Transaction implementation

– job.yaml

This Job is used to generate a NYM transaction between an admin identity and an endorser identity.

198 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

Indy Node

About

This folder consists of indy-node helm charts, which are used by the ansible playbooks for the deployment of the indy
nodes. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/indy-node
|-- templates
| |-- configmap.yaml
| |-- service.yaml
| |-- statesfulset.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which, when combined with values, will generate Indy nodes.

• This folder contains following template files for instantiate_chaincode implementation

– configmap.yaml

The configmap.yaml file through template engine generate configmaps. In Kubernetes, a ConfigMap is a
container for storing configuration data. Things like pods can access the data in a ConfigMap. This file is
used to inject Kubernetes container with indy config data.

– service.yaml

This creates a service for indy node and indy node client. A service in Kubernetes is a grouping of pods
that are running on the cluster

– statesfulset.yaml

Statefulsets is used for Stateful applications, each repliCA of the pod will have its own state, and will be
using its own Volume. This statefulset is used to create indy nodes.

6.4. Helm Charts 199

Blockchain Automation Framework Documentation, Release 0.4.0

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

Indy Pool Genesis

About

This folder consists of pool genesis helm chart which is used to generate the pool genesis for indy network.

Folder Structure

/indy-pool-genesis
|-- templates
| |-- configmap.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This chart is used to generate the initial pool genesis which is used to connect to indy network.

– configmap.yaml

The ConfigMap API resource provides mechanisms to inject containers with configuration data while
keeping containers agnostic of Kubernetes. Here it is used to store Pool Genesis Data.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

200 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

6.4.6 Quorum Charts

The structure below represents the Chart structure for Quorum components in the Blockchain Automation Framework
implementation.

/quorum
|-- charts
| |-- node_constellation
| |-- node_tessera

Pre-requisites

helm to be installed and configured on the cluster.

node_constellation

About

This chart is used to deploy Quorum nodes with constellation transaction manager.

Folder Structure

/node_constellation
|-- templates
| |-- _helpers.tpl
| |-- configmap.yaml
| |-- ingress.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which, when combined with values, will generate valid Kubernetes
manifest files for auth job implementation.

• This folder contains following template files for node_constellation implementation

– _helpers.tpl

This file doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to
put template helpers that we can re-use throughout the chart. That file is the default location for template
partials, as we have defined a template to encapsulate a Kubernetes block of labels for node_constellation.

6.4. Helm Charts 201

Blockchain Automation Framework Documentation, Release 0.4.0

– deployment.yaml

This file is used as a basic manifest for creating a Kubernetes deployment. For the node_constellation,
this file creates a constellation node deployment deployment. The file defines 3 containers, init container
which gets all the secrets from the vault, constellation node container and a quorum container.

– service.yaml

This template is used as a basic manifest for creating a service endpoint for our deployment. The file
basically specifies service type and kind of service ports for the constellation node.

– configmap.yaml

The ConfigMap API resource provides mechanisms to inject containers with configuration data while
keeping containers agnostic of Kubernetes. Here it is used to store Genesis Data.

– ingress.yaml

Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the cluster. Traffic
routing is controlled by rules defined on the Ingress resource. This file containes those resources.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

node_tessera

About

This chart is used to deploy Quorum nodes with tessera transaction manager.

Folder Structure

/node_constellation
|-- templates
| |-- _helpers.tpl
| |-- configmap.yaml
| |-- ingress.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

202 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

Charts description

templates

• This folder contains template structures which, when combined with values, will generate valid Kubernetes
manifest files for tessera implementation.

• This folder contains following template files for node_constellation implementation

– _helpers.tpl

This file doesnt output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to
put template helpers that we can re-use throughout the chart. That file is the default location for template
partials, as we have defined a template to encapsulate a Kubernetes block of labels for node_constellation.

– deployment.yaml

This file is used as a basic manifest for creating a Kubernetes deployment. For the node_constellation, this
file creates a constellation node deployment deployment.The file defines 4 containers, init container which
gets all the secrets from the vault, mysql-init caontainer, mysql-db and a quorum container.

– service.yaml

This template is used as a basic manifest for creating a service endpoint for our deployment. The file
basically specifies service type and kind of service ports for the tessera node.

– configmap.yaml

The ConfigMap API resource provides mechanisms to inject containers with configuration data while
keeping containers agnostic of Kubernetes. Here it is used to store tessera config data.

– ingress.yaml

Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the cluster. Traffic
routing is controlled by rules defined on the Ingress resource. This file contains those resources.

Chart.yaml

• This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

• This file contains the default configuration values for the chart.

6.4.7 Hyperledger Besu Charts

The structure below represents the Chart structure for Hyperledger Besu components in the Blockchain Automation
Framework implementation.

|hyperledger-besu
|-- charts
| |-- node_orion

6.4. Helm Charts 203

Blockchain Automation Framework Documentation, Release 0.4.0

Pre-requisites

helm to be installed and configured on the cluster.

node_orion (besu node chart with orion transaction manager)

About

This folder consists of Hyperledger-Besu node charts which is used by the ansible playbook for the deployment of the
node. This folder contains a template folder, a chart file and a value file.

Folder Structure

|node_orion
|-- templates
| |-- _helpers.tpl
| |-- configmap.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

• This folder contains template structures which, when combined with values, will generate valid Kuberetenes
manifest files for Hyperledger-Besu node implementation.

• This folder contains following template files for node implementation

– _helpers.tpl

This file doesn’t output a Kubernets manifest file as it begins with underscore (_). And it’s a place to put
template helpers that we can re-use throught the chart. That file is the default location for template partials,
as we have defined a template to encapsulate a Kuberntes block label for node.

– configmap.yaml

The configmap contains the genesis file data encoded in base64 format.

– deployment.yaml

This file is used as a basic manifest for creating a Kubernetes deployment. For the node, this file creates a
deployment. The file defines where containers are defined and the respective Hyperledger-Besu images. It
also contain the initial containers where the crypto material is fetched from the vault.

– service.yaml

This template is used as a basic manifest for creating service enpoints for our deployment. This ser-
vice.yaml creates enpoints for the besu node.

204 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

6.5 Jenkins Automation

6.5.1 Jenkins Pipeline

Jenkins is a self-contained, open source automation server which can be used to automate all sorts of tasks related to
building, testing, and delivering or deploying software.

Jenkins in Blockchain Automation Framework

In Blockchain Automation Framework, although Jenkins is not mandatory, we have a single Jenkinsfile as a sample to
help you setup CI/CD Pipelines.

Pre-requisites

1. Setup Jenkins with slave configurations. Declare a slave-config called ansible with the Docker Image
hyperledgerlabs/baf-build:jenkins.

2. A EKS Cluster (Managed on AWS) and its kubeconfig file available and accessible from the Jenkins server.

3. AWS user jenkins with CLI credentials with access to above EKS Cluster.

4. A Hashicorp Vault installation which is accessible from the Jenkins server.

5. A Git repo which will be added as multi-branch pipeline on Jenkins (this is a fork of this repo).

6. A separate baf-configuration git repo where the templated network.yaml for different platforms are
stored. Details of this repo needs to be updated in pipeline Stage Create Configuration File.

Branch Configuration

The Jenkinsfile is designed to ignore develop and main branches by default. So, create platform specific branches
in your forked repo.

• corda for Opensource Corda

• corda-ent for Enterprise Corda

• fabric for Hyperledger Fabric

• besu for Hyperledger Besu

• indy for Hyperledger Indy

• quorum for Quorum

Your baf-configuration repo should have the corresponding folders and files as demanded/configured in Stage
Create Configuration File.

Jenkins Secrets

Following secrets must be stored in Jenkins which is configured in the environment section. This can be re-
named/updated in the Jenkinsfile according to your needs.

• sownak-innersource: is the Git Token and password to access the Git repos.

• aws_demo_kubeconfig: is the Kubeconfig file for AWS EKS cluster.

• jenkins_gitops_key: is the Gitops private key which has Read-Write access to the Git repos.

6.5. Jenkins Automation 205

https://github.com/hyperledger-labs/blockchain-automation-framework/blob/main/automation/Jenkinsfile
https://hub.docker.com/r/hyperledgerlabs/baf-build/tags

Blockchain Automation Framework Documentation, Release 0.4.0

• nexus_user: is the Service User and Password for access to Nexus for Cordapps (only used in Corda).

• aws_demo_vault_key: is the private key to enable ssh access to Hashicorp Vault Server.

• aws_demo_vault_token: is the Root Token for Hashicorp Vault.

• gmaps_key: is the Google Maps API key for frontend (only used when deploying Supplychain application).

• aws_jenkins: is the AWS credentials for jenkins user on AWS IAM.

Environment Changes

Following environment variables need to be updated in Jenkinsfile for your own environment

• VAULT_SERVER=[vault server ip address or domain name reachable from this server]

• VAULT_PORT=[vault server port]

• VAULT_BASTION=[vault bastion server address]

• VAULT_PRIVATE_IP=[vault server private ip address]

Parameters

These can be changed when running manually, the automated Jenkins pipeline always use the default option):

1. FORCE_ACTION (default: no) To force rebuild [ci skip] commits in case of previous failure.

2. RESET_ACTION (default: yes) To have the option to NOT reset the network when running the pipeline.

3. APIONLY_ACTION (default: no) To run only API test on existing live network in case of previous failure.

4. FABRIC_VERSION (default: 1_4_4) To select the Fabric version.

5. FABRIC_CONSENSUS (default: raft) To select the Fabric consensus.

6. CORDA_VERSION (default: 4_4) To select the Corda Opensource version.

7. QUORUM_VERSION (default: 2_5_0) To select the Quorum version (only 2_5_0 is supported for now)

8. QUORUM_CONSENSUS (default: ibft) To change the Quorum consensus.

9. QUORUM_TM (default: tessera) To change the Quorum Transaction manager.

10. INDY_VERSION (default: 1_11_0) To change the Indy version.

• Default Corda Enterprise version is 4_4. This is hardcoded in the jenkinsfile.

• Default Besu settings are: Version 1_4_4, Consensus IBFT, Transaction Manager Orion.

Setup on Jenkins

Configure Multi-branch pipeline with the forked repo as the source. In case you create the branches later, scan the
pipeline to get new branches on Jenkins.

Jenkins Stages

1. Checkout SCM: Manually checkout the branch and check for [ci skip] commits as they are skipped.

2. Prepare build environment: Creates the build directory and sets up the necessary files for build like
gitops.pem, vault.pem, kubeconfig, test jsons. Also creates the ssh-tunnel connection to Hashicorp Vault server.

206 Chapter 6. Developer Guide

Blockchain Automation Framework Documentation, Release 0.4.0

3. <branch>-settings: Set env variables CONSENSUS, VERSION and TM based on the branch i.e. based
on the DLT platform.

4. Create Configuration File: Downloads the config file (main network.yaml, addorg.yaml and appli-
cation.yaml) depending on the BRANCH_NAME, CONSENSUS, VERSION and TM from baf-configuration
and adds the secret parameters.

5. Reset existing network: Resets the network based on application.yaml as that should contain all the
orgs.

6. Deploy network: Deploys the network based on main network.yaml.

7. Add a new node: Adds a new organization to the above network. This is not enabled for Indy currently.

8. Deploy Supplychain-App: Deploys the supplychain app. Not enabled for Indy. Corda Enterprise and
Besu are in the future roadmap.

9. Deploy Identity-App: Deploys the Identity app. Only for Indy.

10. Run SupplyChain API tests: Runs Supplychain API test using newman. This step has a try-catch so
that the whole pipeline does not fail if only API tests fail. Re-run the tests manually if only API tests fail. Not
enabled for Indy. Corda Enterprise and Besu are in the future roadmap.

11. Run Identity API tests: Runs Identity API test using newman. This step has a try-catch so that the
whole pipeline does not fail if only API tests fail. Re-run the tests manually if only API tests fail. Only for Indy.

12. Manual Approval for resetting the deployment: Waits for 20 minutes before resetting the
network. If you want to keep the network for demo, Abort at this stage.

13. Reset network again: Resets the network after the 20 minutes is over or you chose to reset. Keeps the
network running if the previous step was aborted.

6.5. Jenkins Automation 207

Blockchain Automation Framework Documentation, Release 0.4.0

208 Chapter 6. Developer Guide

CHAPTER 7

Sample Usage

This section shows the sample applications that are provisioned by the Blockchain Automation Framework. If you
haven’t already, follow the Getting Started to setup the network for your desired DLT/Blockchain platform. We have
provided sample applications to be deployed using the Blockchain Automation Framework.

7.1 Supplychain

One of the two reference applications for BAF, is the Supplychain usecase. On this page, we will describe the usecase
and its models, as well as pre-requisites to set it up yourself.

7.1.1 Use case description

The Supplychain reference application is an example of a common usecase for a blockchain; the supplychain. The
application defines a consortium of multiple organizations. The application allows nodes to track products or goods
along their chain of custody. It provides the members of the consortium all the relevant data to their product.

The application has been implemented for Hyperledger Fabric, Quorum and R3 Corda, with support for Hyperledger
Besu coming soon. The platforms will slightly differ in behavior, but follow the same principles.

In the context of the supplychain, there are two types of items that can be tracked, products and containers. Below you
will find a definition of the item and its properties:

Product

* health - The blockchain will only store min, max and average values. The value currently is obsolete and not
used, but in place for any future updates should these enable the value.

The creator of the product will be marked as its initial custodian. As a custodian, a node is able to package and
unpackage goods.

Container/ContainerState

209

Blockchain Automation Framework Documentation, Release 0.4.0

When handling an item, you can package it. It then stores data in an object called ContainerState, which is
structured as such:

* health - The blockchain will only store min, max and average values. The value currently is obsolete and not
used, but in place for any future updates should these enable the value.

Products being packaged will have their trackingID added to the contents list of the container. The product will
be updated when its container is updated. If a product is contained it can no longer be handled directly (i.e. transfer
ownership of a single product while still in a container with others).

Any of the participants can execute methods to claim custodianship of a product or container. History can be extracted
via transactions stored on the ledger/within the vault.

7.1.2 Prerequisites

• The supplychain application requires that nodes have subject names that include a location field in the x.509
name formatted as such: L=<lat>/<long>/<city>

• DLT network of 1 or more organizations; a complete supplychain network would have the following organiza-
tions

– Supplychain (admin/orderer organization)

– Carrier

– Store

– Warehouse

– Manufacturer

7.1.3 Setup Guide

The setup process has been automated using Ansible scripts, GitOps, and Helm charts.

The files have all been provided to use and require the user to populate the network.yaml file accordingly, following
these steps:

1. Create a copy of the network.yaml you have used to set up your network.

2. For each organization, navigate to the gitops section. Here, the chart_source field will change. The
value needs to be changed to examples/supplychain-app/charts. This is the relative location of the
Helm charts for the supplychain app.

3. Make sure that you have deployed the smart contracts for the platform of choice; along with the correct
network.yaml for the DLT.

• For R3 Corda, run the platforms\r3-corda\configuration\deploy-cordapps.yaml

• For Hyperledger Fabric, run the platforms/hyperledger-fabric/configuration/
chaincode-ops.yaml

• For Quorum, no smart contracts need to be deployed beforehand.

210 Chapter 7. Sample Usage

Blockchain Automation Framework Documentation, Release 0.4.0

7.1.4 Deploying the supplychain-app

When having completed the Prerequisites and setup guide, deploy the supplychain app by executing the following
command:

ansible-playbook examples/supplychain-app/configuration/deploy-supplychain-app.
yaml -e "@/path/to/application/network.yaml"

7.1.5 Testing/validating the supplychain-app

For testing the application, there are API tests included. For instructions on how to set this up, follow the README.md
here.

7.2 Indy RefApp

7.2.1 Use case description

Welcome to the Indy Ref App which allows nodes to implement the concept of digital identities using blockchain.
There are 3 components

• Alice: Alice is the end user and a student.

• Faber: Faber is the university.

• Indy Webserver

In this usecase, Alice obtains a Credential from Faber College regarding the transcript. A connection is build between
Faber College and Alice (onboarding process).Faber College creates and sends a Credential Offer to Alice. Alice
creates a Credential Request and sends it to Faber College.Faber College creates the Credential for Alice. Alice now
receives the Credential and stores it in her wallet.

7.2.2 Pre-requisites

A network with 2 organizations:

• Authority

– 1 Trustee

• University

– 4 Steward nodes

– 1 Endorser A Docker repository

Find more at Indy-Ref-App

7.2. Indy RefApp 211

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/examples/supplychain-app/tests
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/examples/identity-app

Blockchain Automation Framework Documentation, Release 0.4.0

212 Chapter 7. Sample Usage

CHAPTER 8

BAF current roadmap

OFE* : Operational feature enhancement

Legend of annotations:

Mark Description

work to do

work completed

on-going work

stretch goal

on hold

8.1 General

• Improve the existing readthedocs documentations

• Platforms and components upgrade:

– Helm3 upgrade

– Ambassador upgrade to 1.9.1

– Complete molecule test scenarios for BAF R3 Corda OS and HL Fabric

– EKS upgrade to 1.19

– Setup AWS cloudwatch exporter

213

Blockchain Automation Framework Documentation, Release 0.4.0

– Grafana and Promethus integration

– Flux version upgrade

– Support for HashiCorp vault kv version 2

– Improve logging/error messaging in playbooks

8.2 Platforms

• Reduce/decouple ansible dependecy in DLT platforms automation

• Corda Enterprise operational feature enhancements

– Enable mutiple notaries

– R3 Corda version 4.7 upgrade

– CENM version 1.5 upgrade

– Addition of notary node organisation to an existing network

– HA Notary options

– Enable PostGreSQL support for Corda Enterprise

– CENM 1.5 services (Auth, Gateway and Zone) support

– Removal of node

• HL Fabric operational feature enhancements

– HL Fabric 2.2 version upgrade

– HL Fabric 1.4.8 upgrade

– Multi Orderer organisation option for RAFT

– Feature for user identities

– External chaincode for Fabric 2.2.x

– CI/CD piplelines for chaincode deployment

• HL Besu operational feature enhancements

– Enable DNS support

– Addition of new validator node

– Add tessera transaction manager support

214 Chapter 8. BAF current roadmap

Blockchain Automation Framework Documentation, Release 0.4.0

– Enable deployment without proxy (proxy as none option)

– Add clique consensus mechanism support

– Add ethash consensus mechanism support

– Enable bootnodes

• Quorum operational feature enhancements

– Version upgrade (Tessera and Quorum node) - v21.4.x

– Implement private transactions

8.3 Application

• Hyperledger Besu reference application

8.4 Histroic DLT/Blockchain support releases

This section has been moved to the Compability Matrix

8.3. Application 215

Blockchain Automation Framework Documentation, Release 0.4.0

216 Chapter 8. BAF current roadmap

CHAPTER 9

Compability Matrix

BAF current tools/platforms support version and historic details

9.1 Colour Legends

217

Blockchain Automation Framework Documentation, Release 0.4.0

9.2 Compatibility Table

218 Chapter 9. Compability Matrix

CHAPTER 10

Architecture Reference

Fig. 1: Figure: Blockchain Automation Framework Physical Architecture

10.1 Security Services

These are the services to enable the security of cryptographic keys, users, nodes and transactions along with the
infrastructure supporting those services.

219

Blockchain Automation Framework Documentation, Release 0.4.0

10.1.1 Policy Management

Policy management is the process of creating, communicating, and maintaining policies and procedures within an
organization. Policy Management is a key feature used in development as well as operational phase of any product as
it dictates who has what control in the dev/test/prod environment(s).

In the Blockchain Automation Framework (BAF), Policy Management is provided by the Git repository. BAF uses
GitOps for deployment and operations, hence all policies are defined in the Git repository. Git branches with appro-
priate rights to users is maintained for releases in each environment. Read/write access, admin access to git repository,
access to add access keys in repository, pull request based merge in main branch are some of the key features that is
used in BAF.

10.1.2 Key Management

Key Management is the process of overseeing the generation, exchange, storage, use and destruction of cryptographic
keys. Key Management is an important consideration for blockchain as all transactions in blockchain are signed
using digital keys. Loss of keys can lead to financial loss as well as brand impact to the organization conducting the
transaction.

The Blockchain Automation Framework uses Hashicorp Vault to hold secrets that are used by the DLT/Blockchain
platform. A secret is anything that you want to tightly control access to (e.g. API keys, passwords, certificates).
Vault provides a unified interface to any secret, while providing tight access control and recording a detailed audit log.
Hashicorp Vault provides an abstraction on top of a Cloud KMS and does not create Cloud Platform lock-in. See the
Platform-Specific Reference Guides for specific details on the structure of the Vault. Vault is a pre-requisite for BAF
and should be configured and available before the automation is triggered.

10.1.3 Identity and Access Management (IAM)

Identity and Access Management (IAM) is the process of defining and managing the access privileges of network users
and determining how users are granted or denied those privileges. IAM is the front door for all blockchain applications
and hence has to be designed upfront to reduce risk. Strong authentication techniques and user level permissioning
will help shift left some of the security concerns.

The Blockchain Automation Framework does not provide IAM controls. This is to be developed and applied by the
application/use-case.

10.1.4 Certificate Authority (CA)

A Certificate Authority dispenses certificates to different actors. These certificates are digitally signed by the CA and
bind together the actor with the actor’s public key (and optionally with a comprehensive list of properties). As a result,
if one trusts the CA (and knows its public key), it can trust that the specific actor is bound to the public key included
in the certificate, and owns the included attributes, by validating the CA’s signature on the actor’s certificate.

For test and dev environments, the Blockchain Automation Framework generates certificates and keys (for all Plat-
forms) and also provides CA servers (Fabric only).

For production use, generation of certificates, keys and CA servers via the Blockchain Automation Framework is not
recommended. The existing certificates and keys can be placed in Vault in the paths described under subsections of
Platform-Specific Reference Guides .

220 Chapter 10. Architecture Reference

https://www.vaultproject.io/
https://www.vaultproject.io/

Blockchain Automation Framework Documentation, Release 0.4.0

10.1.5 Policies/Operations

Policies/Operations refers to the actual security policies that an organization may/should have governing their business
processes, operations and management.

This part of the reference architecture is out of scope for the Blockchain Automation Framework.

10.2 DevOps Services

These services enable the development of on-ledger (e.g. smart contracts) or off-ledger services based on SDK’s and
IDE’s (e.g. Web APIs) including the maintenance, monitoring and administration of the distributed ledger and its on-
and off-ledger services.

10.2.1 Version Management

Version Management capabilities enable change control of smart contract and decentralized applications. This enables
developers and operators to track different version of the code as well as releases.

The Blockchain Automation Framework utilizes Git as the version management tool.

10.2.2 Configuration Management

Configuration management involves automation of scripts and ad-hoc practices in a consistent, reliable and secure way.
Configuration Management enables operators to set-up DLT/Blockchain networks idempotently by using minimum
configuration changes.

The Blockchain Automation Framework utilizes Ansible for configuration management. Ansible features a state
driven, goal oriented resource model that describes the desired state of computer systems and services, not the paths to
get them to this state. No matter what state a system is in, Ansible understands how to transform it to the desired state
(and also supports a “dry run” mode to preview needed changes). This allows reliable and repeatable IT infrastructure
configuration, avoiding the potential failures from scripting and script-based solutions that describe explicit and often
irreversible actions rather than the end goal.

10.2.3 Kubernetes Deploy/Operate

Kubernetes Deploy/Operate consists of the services that are used to deploy desired state of various services on Kuber-
netes clusters. It is also used for maintenance and operations of these services.

The Blockchain Automation Framework uses Helm to achieve this. Helm uses a packaging format called charts.
A chart is a collection of files that describe a related set of Kubernetes resources. A single chart might be used to
deploy something simple, like a memcached pod, or something complex, like a full web app stack with HTTP servers,
databases, caches, and so on, which in our case, is the desired blockchain platform. While using helm, we can deploy
a set of services and deployments together as a release.

10.2.4 Infrastructure as Code

Infrastructure as Code (IaC) is the process of managing and provisioning cloud hardware through machine-readable
definition files, rather than physical hardware configuration or interactive configuration tools. IaC can be versioned
and hence, maintained easily and can be used to deploy cloud environments idempotently.

This part of the reference architecture is out of scope for the Blockchain Automation Framework.

10.2. DevOps Services 221

Blockchain Automation Framework Documentation, Release 0.4.0

10.2.5 Build, Test, and Artifact Management

Build, Test, and Artifact Management capabilities enable continuous delivery management by ensuring automation of
the build and deployment of artefacts.

The Blockchain Automation Framework (BAF) uses TravisCI for running static tests, building and storing of Docker
images. Jenkins Pipelines (as code) are also available for continuous deployment/reset of DLT network. Artefact
management is not implemented yet, but GitHub Releases can be used for this.

10.2.6 Delivery Management

Delivery Management is the process where all software, artifacts and data from disparate tools used to move a product
or feature from initial idea to max adoption are integrated into a unified common data layer, with the key information
connected and easily accessible, giving each individual and team an unprecedented level of insight into bottlenecks
and inefficiencies dramatically improving the speed at which better software gets to users safely.

As it is opensource and a hyperledger-labs project, the Blockchain Automation Framework integrates with GitHub
for reporting and tracking new features, bugs/issues and releases. BAF uses ReadTheDocs for sharing documenta-
tion. In specific implementations, the Blockchain Automation Framework can be integrated with tools like Jira and
Confluence.

10.3 Presentation Services

The presentation services specify how the application will be provided to the end-user. It also defines the on-ledger
and off-ledger services and capabilities via different channels.

This part of the reference architecture is out of scope for Blockchain Automation Framework (BAF) and will be
determined by the application using BAF.

10.4 Integration Services

These are combination of the services to interact with on- and off-ledger services via APIs or ledger protocols including
runtime and operations services.

10.4.1 DLT Integration

DLT integration refers to how the presentation services will talk to the DLT Platform. This will depend on the presen-
tation service as such.

The Blockchain Automation Framework provides a sample application Supplychain, which uses Express Nodejs API
as the integration layer to talk to the underlying DLT platform. Each DLT/Blockchain platform also enables this by
providing SDKs or APIs themselves.

10.4.2 Application Integration

Application Integration refers to how the application will talk to different components of the same application.

This part of the reference architecture is out of scope for the Blockchain Automation Framework (BAF) and will be
determined by the application using BAF.

222 Chapter 10. Architecture Reference

Blockchain Automation Framework Documentation, Release 0.4.0

10.4.3 External Integration

External integration is required when the blockchain application interfaces with systems outside of the application or
DLT platform.

This part of the reference architecture is out of scope for the Blockchain Automation Framework (BAF) and will be
determined by the application using BAF.

10.5 Distributed Data Platforms

Distributed Data Platforms form the core of any distributed architecture solution. The Blockchain Automation
Framework (BAF) aims to support both Distributed Ledgers and Distributed Databases. BAF currently supports
DLT/Blockchain Platforms: Corda, Hyperledger Fabric, Hyperledger Indy, Hyperledger Besu, and Quorum.

10.6 Infrastructure Services

Infrastructure services refer to the various services needed to run or deploy the different services of a distributed ledger
architecture.

10.6.1 Cloud Providers

A Cloud Provider is a company that delivers cloud computing based services with features like scalibility and easy
maintainance.

The Blockchain Automation Framework is built on Kubernetes, so will run on any Cloud provider providing Kuber-
netes as a service; this includes private and hybrid clouds.

10.6.2 Container Services

Container services allows users to deploy and manage containers using container based virtualization. Containers
allow a developer to package up an application with all of the parts it needs, such as libraries and other dependencies,
and ship it all out as one package.

The Blockchain Automation Framework (BAF) uses 2 containerization technologies: Docker and Kubernetes. Kuber-
netes (K8s) is an open-source system for automating deployment, scaling, and management of containerized applica-
tions. Docker is a tool designed to make it easier to create, deploy, and run applications by using containers.

10.6.3 Backup/Restore

Disaster recovery involves a set of policies, tools and procedures to enable the recovery of vital technology infras-
tructure and systems following a natural or human-induced disaster. Even though blockchain applications are self
replicating, complete auto recovery is not always possible. Therefore it is important to have guidelines around backing
up the data in a distributed store and restoring it using a conventional restoring mechanism. Backup is the process
of copying and archiving data. Restore is the process of returning data that has been lost, stolen or damaged from
secondary storage.

This part of the reference architecture is out of scope for the Blockchain Automation Framework.

10.5. Distributed Data Platforms 223

https://docs.corda.net/
https://hyperledger-fabric.readthedocs.io
https://hyperledger-indy.readthedocs.io/en/latest/
https://besu.hyperledger.org/en/stable/
https://www.goquorum.com/

Blockchain Automation Framework Documentation, Release 0.4.0

10.7 Other Data Services

Data services are related to on-ledger storage and data processing.

This part of the reference architecture is out of scope for the Blockchain Automation Framework.

10.8 Platform-Specific Reference Guides

10.8.1 Corda Enterprise Architecture Reference

Kubernetes

Peer Nodes

The following diagram shows how Corda peer nodes will be deployed on your Kubernetes instance.

Figure:
R3 Corda Enterprise Kubernetes Deployment - Peers

Notes:

1. Pods are shown in blue in the diagram.

2. Certificates are mounted as in-memory volumes from the Vault.

3. The h2 database is a separate pod running in the same namespace. In future release, PostgreSQL will be
implemented as well.

4. All storage uses a Kubernetes Persistent Volume.

5. Release 0.6.0.0 does not implement Corda firewall components. These will be implemented in later releases
based on demand.

224 Chapter 10. Architecture Reference

Blockchain Automation Framework Documentation, Release 0.4.0

Support Services

The following diagram shows how the Corda Enterprise Network Map Services (Identity Manager, Networkmap,
Signer and Notary) will be deployed on your Kubernetes instance(s).

Figure:
R3 Corda Kubernetes Deployment - CENM Services

Notes:

1. Pods are shown in blue in the diagram.

2. Certificates are mounted as in-memory volumes from the Vault.

3. All CENM pods (except Notary) have separate H2 volume for data storage. In future release, PostgreSQL will
be implemented as well.

4. Notary service has a separate H2 pod for data storage. In future release, PostgreSQL will be implemented as
well.

5. All storage uses a Kubernetes Persistent Volume.

6. Release 0.6.0.0 implements Notary in the same namespace as other CENM services. They will be separated
when HA Notary is implemented in later releases.

10.8. Platform-Specific Reference Guides 225

Blockchain Automation Framework Documentation, Release 0.4.0

Components

Figure:
Corda Enterprise Components

Docker Images

For Corda Enterprise, the corda_ent_node and corda_ent_firewall docker images should be built and put in a private
docker registry. Please follow these instructions to build docker images for Corda Enterprise.

The official Corda images are available on Docker Hub. These are evaluation only, for production implementation,
please aquire licensed images from R3, upload them into your private docker registry and update the tags accordingly.

Following Corda Docker Images are used and needed by the Blockchain Automation Framework.

• Corda Network Map Service (Built as per these instructions)

• Corda Identity Manager Service

• Corda Signer

• Corda PKITool (Built as per these instructions)

• Corda Notary (Built as per these instructions)

• Corda Node (Built as per these instructions)

• Corda Firewall (Built as per these instructions)

Ansible Playbooks

Detailed information on ansible playbooks can be referred here and the execution process can be referred here.

Helm Charts

Detailed information on helm charts can be referred here.

226 Chapter 10. Architecture Reference

https://github.com/Accenture-BAF/corda-kubernetes-deployment/tree/main/docker-images
https://hub.docker.com/u/corda
https://hub.docker.com/r/corda/enterprise-networkmap
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/images
https://hub.docker.com/r/corda/enterprise-identitymanager
https://hub.docker.com/r/corda/enterprise-signer
https://hub.docker.com/r/corda/enterprise-pkitool
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/images
https://hub.docker.com/r/corda/notary
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/r3-corda-ent/images
https://github.com/Accenture-BAF/corda-kubernetes-deployment/tree/main/docker-images
https://github.com/Accenture-BAF/corda-kubernetes-deployment/tree/main/docker-images

Blockchain Automation Framework Documentation, Release 0.4.0

Vault Configuration WIP

The Blockchain Automation Framework stores their crypto and credentials immediately within the secret
secrets engine. Optionally, secret_path can be set on the network.yaml to change the secret engine from the
default secret/.

• secrets/notary/credentials/database - Contains password for notary database for admin and
user:

sa="newh2pass" notaryUser1="xyz1234" notaryUser2="xyz1236"

• secrets/notary/credentials/keystore - Contains password for notary keystore:

keyStorePassword="newpass" trustStorePassword="newpass" defaultTrustStorePassword
→˓"=trustpass" defaultKeyStorePassword="cordacadevpass" sslkeyStorePassword="sslpass"
→˓ssltrustStorePassword="sslpass"

• secrets/notary/credentials/networkmappassword - Contains password for networkmap:

sa="admin"

• secrets/notary/credentials/rpcusers - Contains password for rpc users:

notaryoperations="usera" notaryoperations1="usera" notaryoperations2="usera"
→˓notaryadmin="usera"

• secrets/notary/credentials/vaultroottoken - Contains password for vault root token in the
format:

rootToken="<vault.root_token>"

• secrets/<org-name>/credentials/database - Contains password for notary database for admin
and user:

sa="newh2pass" <org-name>User1="xyz1234" <org-name>User2="xyz1236"

• secrets/<org-name>/credentials/keystore - Contains password for notary keystore:

keyStorePassword="newpass" trustStorePassword="newpass" defaultTrustStorePassword
→˓"=trustpass" defaultKeyStorePassword="cordacadevpass" sslkeyStorePassword="sslpass"
→˓ssltrustStorePassword="sslpass"

• secrets/<org-name>/credentials/networkmappassword - Contains password for networkmap:

sa="admin"

• secrets/<org-name>/credentials/rpcusers - Contains password for rpc users:

<org-name>operations="usera" <org-name>operations1="usera" <org-name>operations2=
→˓"usera" <org-name>admin="usera"

• secrets/<org-name>/credentials/vaultroottoken - Contains password for vault root token in
the format:

rootToken="<vault.root_token>"

The complete Corda Enterprise Certificate and key paths in the vault can be referred here.

10.8. Platform-Specific Reference Guides 227

Blockchain Automation Framework Documentation, Release 0.4.0

10.8.2 Certificate Paths on Vault for Corda Enterprise

• All values must be Base64 encoded files as BAF decodes them.

• Optionally, secret_path can be set on the network.yaml to change the secret engine from the default
secret/.

For CENM

For Node/Peer Organization

10.8.3 Corda Opensource Architecture Reference

Kubernetes

Peer Nodes

The following diagram shows how Corda peer nodes will be deployed on your Kubernetes instance.

228 Chapter 10. Architecture Reference

Blockchain Automation Framework Documentation, Release 0.4.0

Figure: R3 Corda Ku-
bernetes Deployment - Peers

Notes:

1. Pods are shown in blue in the diagram.

2. Certificates are mounted as in-memory volumes from the vault.

3. The node-pod runs corda.jar.

4. The h2 database is a separate pod running in the same namespace

5. All storage uses a Kubernetes Persistent Volume.

10.8. Platform-Specific Reference Guides 229

Blockchain Automation Framework Documentation, Release 0.4.0

Support Services

The following diagram shows how the Corda Support Services (Doorman, Networkmap and Notary) will be de-
ployed on your Kubernetes instance.

Figure:
R3 Corda Kubernetes Deployment - Support Services

Notes:

1. Pods are shown in blue in the diagram.

2. Certificates are mounted as in-memory volumes from the vault.

3. Doorman and Networkmap services have a separate MongoDB pod for data storage.

4. Notary service has a separate H2 pod for data storage.

5. All storage uses a Kubernetes Persistent Volume.

230 Chapter 10. Architecture Reference

Blockchain Automation Framework Documentation, Release 0.4.0

Components

Figure:
Corda Components

Docker Images

The Blockchain Automation Framework creates/provides a set of Corda Docker images that can be found in the
Hyperledger-Labs repository or can be built as per configuring prerequisites. The following Corda Docker Images are
used and needed by the Blockchain Automation Framework.

• Corda Network Map Service

• Corda Doorman Service

• Corda Node

Ansible Playbooks

Detailed information on ansible playbooks can be referred here and the execution process can be referred here

Helm Charts

Detailed information on helm charts can be referred here

Vault Configuration

The Blockchain Automation Framework stores their crypto and credentials immediately within the secret
secrets engine. Optionally, secret_path can be set on the network.yaml to change the secret engine from the
default secret/. | Crypto Material Path | Credentials Path | |———————-|———————-| | secret/
<servicename> | secret/<servicename>/credentials |

• secrets/doorman/credentials/mongodb - Contains password for doorman mongodb database.

10.8. Platform-Specific Reference Guides 231

https://hub.docker.com/u/hyperledgerlabs
https://hub.docker.com/r/hyperledgerlabs/networkmap-linuxkit
https://hub.docker.com/r/hyperledgerlabs/doorman-linuxkit
https://hub.docker.com/r/hyperledgerlabs/corda

Blockchain Automation Framework Documentation, Release 0.4.0

mongodbPassword="admin"

• secrets/doorman/credentials/userpassword - Contains password for doorman mongodb
database user:

sa="newdbnm"

• secrets/networkmap/credentials/mongodb - Contains password for networkmap mongodb
database:

mongodbPassword="newdbnm"

• secrets/networkmap/credentials/userpassword - Contains password for networkmap mon-
godb database user:

sa="admin"

• secrets/notary/credentials/database - Contains password for notary database for admin and
user:

sa="newh2pass" notaryUser1="xyz1234" notaryUser2="xyz1236"

• secrets/notary/credentials/keystore - Contains password for notary keystore:

keyStorePassword="newpass" trustStorePassword="newpass" defaultTrustStorePassword
→˓"=trustpass" defaultKeyStorePassword="cordacadevpass" sslkeyStorePassword="sslpass"
→˓ssltrustStorePassword="sslpass"

• secrets/notary/credentials/networkmappassword - Contains password for networkmap:

sa="admin"

• secrets/notary/credentials/rpcusers - Contains password for rpc users:

notaryoperations="usera" notaryoperations1="usera" notaryoperations2="usera"
→˓notaryadmin="usera"

• secrets/notary/credentials/vaultroottoken - Contains password for vault root token in the
format:

rootToken="<vault.root_token>"

• secrets/<org-name>/credentials/database - Contains password for notary database for admin
and user:

sa="newh2pass" <org-name>User1="xyz1234" <org-name>User2="xyz1236"

• secrets/<org-name>/credentials/keystore - Contains password for notary keystore:

keyStorePassword="newpass" trustStorePassword="newpass" defaultTrustStorePassword
→˓"=trustpass" defaultKeyStorePassword="cordacadevpass" sslkeyStorePassword="sslpass"
→˓ssltrustStorePassword="sslpass"

• secrets/<org-name>/credentials/networkmappassword - Contains password for networkmap:

sa="admin"

232 Chapter 10. Architecture Reference

Blockchain Automation Framework Documentation, Release 0.4.0

• secrets/<org-name>/credentials/rpcusers - Contains password for rpc users:

<org-name>operations="usera" <org-name>operations1="usera" <org-name>operations2=
→˓"usera" <org-name>admin="usera"

• secrets/<org-name>/credentials/vaultroottoken - Contains password for vault root token in
the format:

rootToken="<vault.root_token>"

The complete Certificate and key paths in the vault can be referred here

10.8.4 Certificate Paths on Vault for Corda Network

• Optionally, secret_path can be set on the network.yaml to change the secret engine from the default
secret/.

For Networkmap

For Doorman

For Notary organization

For Node/Peer Organization

10.8.5 Hyperledger Fabric Architecture Reference

Kubernetes

Peer Nodes

The following diagram shows how Hyperledger Fabric peer nodes will be deployed on your Kubernetes instance.

10.8. Platform-Specific Reference Guides 233

Blockchain Automation Framework Documentation, Release 0.4.0

Figure:
Hyperledger Fabric Kubernetes Deployment - Peers

Notes:

1. Pods are shown in blue in the diagram.

2. Each peer pod will have both fabric-peer and fabric-couchdb containers running. Since they are in
the same pod, Kubernetes always schedules them on the same VM and they can communicate to each other
through localhost. This guarantees minimal latency between them.

3. Host VM’s Docker socket is attached to peer pod so it can create chaincode containers. Kubernetes is not aware
of these containers.

4. TLS and MSP certificates are mounted as in-memory volumes from the Vault.

5. The storage uses a Kubernetes Persistent Volume.

Orderer Nodes

The following diagram shows how Hyperledger Fabric orderer will be deployed on your Kubernetes instance.

234 Chapter 10. Architecture Reference

Blockchain Automation Framework Documentation, Release 0.4.0

Figure:
Hyperledger Fabric Kubernetes Deployment - Orderer

Notes:

1. Pods are shown in blue in the diagram.

2. TLS and MSP certificates are mounted as in-memory volumes from the Vault.

3. The storage uses a Kubernetes Persistent Volume.

10.8. Platform-Specific Reference Guides 235

Blockchain Automation Framework Documentation, Release 0.4.0

Components

Figure:
Hyperledger Fabric Components

Docker Images

The Blockchain Automation Framework uses the officially published Hyperledger Fabric Docker images from
hub.docker.com. The following Hyperledger Fabric Docker Images are used by the Blockchain Automation Frame-
work.

• fabric-ca - Hyperledger Fabric Certificate Authority

• fabric-couchdb - CouchDB for Hyperledger Fabric Peer

• fabric-kafka - Kafka for Hyperledger Fabric Orderer

• fabric-orderer - Hyperledger Fabric Orderer

• fabric-peer - Hyperledger Fabric Peer

• fabric-zookeeper - Zookeeper for Hyperledger Fabric Orderer

Ansible Playbooks

Detailed information on ansible playbooks can be referred here and the execution process can be referred here

Helm Charts

Detailed information on helm charts can be referred here

Vault Configuration

The Blockchain Automation Framework stores their crypto and credentials immediately within the secret se-
crets engine. Optionally, secret_path can be set on the network.yaml to change the secret engine from the default

236 Chapter 10. Architecture Reference

https://hub.docker.com/search?q=hyperledger%2Ffabric&type=image
https://hub.docker.com/r/hyperledger/fabric-ca
https://hub.docker.com/r/hyperledger/fabric-couchdb
https://hub.docker.com/r/hyperledger/fabric-kafka
https://hub.docker.com/r/hyperledger/fabric-orderer
https://hub.docker.com/r/hyperledger/fabric-peer
https://hub.docker.com/r/hyperledger/fabric-zookeeper

Blockchain Automation Framework Documentation, Release 0.4.0

secret/. | Crypto Material Path | Credentials Path | |———————-|———————-| | secret/crypto |
secret/credentials |

• secret/credentials/ordererOrganizations/<orderer-org>/ca - Contains password for
the Orderer CA Bootstrap user in the format:

user="${ORDERER_NAMESPACE}-adminpw

• secret/credentials/peerOrganizations/<org1>/ca - Contains password for the Org Peers CA
Bootstrap user in the format:

user="${NAMESPACE}-adminpw

• secret/credentials/peerOrganizations/<org1>/<peern>couchdb - Contains the password
for the Peer’s CouchDB user in the format:

pass="${NAMESPACE}-peer-${n}-adminpw

The complete Certificate and key paths in the vault can be referred here.

10.8.6 Certificate Paths on Vault for Fabric Network

• Optionally, secret_path can be set on the network.yaml to change the secret engine from the default
secret/.

10.8.7 For each channel

| Path | Key (for Vault) | Type | |———————————————————————————————————–|————————————-
|————-| | /secret/crypto/ordererOrganizations/ | genesisBlock | Genesis |

For each orderer organization

For each peer organization

10.8.8 Hyperledger Indy Architecture Reference

Kubernetes

Peer Nodes

The following diagram shows how Hyperledger Indy peer nodes will be deployed on your Kubernetes instance.

10.8. Platform-Specific Reference Guides 237

Blockchain Automation Framework Documentation, Release 0.4.0

Figure:
Hyperledger Indy Kubernetes Deployment - Peers

Notes:

1. Pods are shown in blue in the diagram.

2. Each StatefulSet will have steward-node-init for initialization (read crypto from Vault) and
steward-node containers running. Since they are in the same pod, Kubernetes always schedules them on the
same VM and they can communicate to each other through localhost. This guarantees minimal latency between
them.

3. The storage uses a Kubernetes Persistent Volume.

238 Chapter 10. Architecture Reference

Blockchain Automation Framework Documentation, Release 0.4.0

Components

Figure:
Hyperledger Indy Components

Docker Images

The Blockchain Automation Framework creates/provides own Docker images, which are based on Ubuntu and consist
with official Hyperledger Indy libraries (indy-plenum and indy-node).

• indy-cli - Docker image contains Indy CLI, which is used to issue transactions again an Indy pool.

• indy-key-mgmt - Docker image for indy key management, which generates identity crypto and stores it into
Vault or displays it onto the terminal in json format.

• indy-node - Docker image of an Indy node (runs using a Steward identity).

Ansible Playbooks

Detailed information on ansible playbooks can be referred here and the execution process can be referred here.

Helm Charts

Detailed information on helm charts can be referred here.

Vault Configuration

The Blockchain Automation Framework stores their crypto immediately within the secret secrets engine. The
crypto is stored by each organization under /org_name_lowercase - it contains provate/public keys, dids and
seeds.

The complete key paths in the vault can be referred here.

10.8. Platform-Specific Reference Guides 239

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/images/indy-cli
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/images/indy-key-mgmt
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/hyperledger-indy/images/indy-node

Blockchain Automation Framework Documentation, Release 0.4.0

10.8.9 Certificate Paths on Vault for Indy Network

For each organization

10.8.10 Quorum Architecture Reference

Kubernetes

Nodes with Tessera

The following diagram shows how Quorum peer nodes with Tessera TM will be deployed on your Kubernetes instance.

Figure: Quorum Ku-
bernetes Deployment - Tessera Peers

240 Chapter 10. Architecture Reference

Blockchain Automation Framework Documentation, Release 0.4.0

Notes:

1. Pods are shown in blue in the diagram.

2. Each peer pod will have three init-containers: certificates-init to read crypto from Vault,
mysql-init to initialize MySQL DB and quorum-genesis-init-container to generate genesis
block.

3. Each peer pod will then have three containers: mysql-db, tessera and quorum containers running. Since
they are in the same pod, Kubernetes always schedules them on the same VM and they can communicate to
each other through localhost. This guarantees minimal latency between them.

4. The storage uses a Kubernetes Persistent Volume.

Nodes with Constellation

The following diagram shows how Quorum peer nodes with Constellation TM will be deployed on your Kubernetes
instance.

10.8. Platform-Specific Reference Guides 241

Blockchain Automation Framework Documentation, Release 0.4.0

Figure: Quorum Ku-
bernetes Deployment - Constellation Peers

Notes:

1. Pods are shown in blue in the diagram.

2. Each peer pod will have two init-containers: certificates-init to read crypto from Vault and
quorum-genesis-init-container to generate genesis block.

3. Each peer pod will then have two containers: constellation and quorum containers running. Since they
are in the same pod, Kubernetes always schedules them on the same VM and they can communicate to each
other through localhost. This guarantees minimal latency between them.

4. The storage uses a Kubernetes Persistent Volume.

242 Chapter 10. Architecture Reference

Blockchain Automation Framework Documentation, Release 0.4.0

Components

Figure:
Quorum Components

Docker Images

The Blockchain Automation Framework uses the officially published Quorum Docker images from hub.docker.com.
The following Quorum Images are used by the Blockchain Automation Framework.

• quorum - Quorum Peer Node

• tessera - Tessera Transaction Manager

• constellation - Constellation Transaction Manager

Additionnally, following common images are also used:

• busybox - Used for DB initialtization

• mysql-server - Used as the DB for Tessera Transaction Manager

• alpine-utils - Used as a utility to get crypto from Hashicorp Vault server

Ansible Playbooks

Detailed information on ansible playbooks can be referred here and the execution process can be referred here.

Helm Charts

Detailed information on helm charts can be referred here.

Vault Configuration

The Blockchain Automation Framework stores their crypto immediately in the Hashicorp Vault secrets engine.
The crypto is stored by each organization under path secret/org_namespace - it contains node keys, keystore,

10.8. Platform-Specific Reference Guides 243

https://hub.docker.com/u/quorumengineering
https://hub.docker.com/r/quorumengineering/quorum
https://hub.docker.com/r/quorumengineering/tessera
https://hub.docker.com/r/quorumengineering/constellation
https://hub.docker.com/_/busybox
https://hub.docker.com/r/mysql/mysql-server
https://hub.docker.com/r/hyperledgerlabs/alpine-utils

Blockchain Automation Framework Documentation, Release 0.4.0

passwords, TM keys, and CA certificates for proxy connections. Optionally, secret_path can be set on the net-
work.yaml to change the secret engine from the default secret/.

The complete key paths in the Vault can be referred here.

10.8.11 Certificate Paths on Vault for Quorum Network

• Optionally, secret_path can be set on the network.yaml to change the secret engine from the default
secret/.

For IBFT/ RAFT

For Tessera/Constellation

For Root Certificates

Details of Variables

10.8.12 Hyperledger Besu Architecture Reference

Kubernetes

Nodes with Orion Transaction Manager

The following diagram shows how Besu peer nodes with Orion TM will be deployed on your Kubernetes instance.

244 Chapter 10. Architecture Reference

Blockchain Automation Framework Documentation, Release 0.4.0

Figure: Hyperledger
Besu Kubernetes Deployment - Orion Peers

Notes:

1. Pods are shown in blue in the diagram.

2. Each peer pod will have two init-containers: certificates-init to read crypto from Vault and
liveness-check to check that if the bootnode endpoint is available, only when bootnode is used.

3. Each peer pod will then have two containers: orion and besu running. Since they are in the same pod,
Kubernetes always schedules them on the same VM and they can communicate to each other through localhost.
This guarantees minimal latency between them.

4. The storage uses a Kubernetes Persistent Volume.

5. In future releases, the levelDB PVC will be replaced by a containerised database.

10.8. Platform-Specific Reference Guides 245

Blockchain Automation Framework Documentation, Release 0.4.0

Validator Nodes

The following diagram shows how Besu Validator nodes will be deployed on your Kubernetes instance.

Figure: Hyperledger
Besu Kubernetes Deployment - Validators

Notes:

1. Pods are shown in blue in the diagram.

2. Each peer pod will have one init-containers: certificates-init to read crypto from Vault.

3. Each peer pod will then have one container besu running.

4. The storage uses a Kubernetes Persistent Volume for storing the besu data-dir.

246 Chapter 10. Architecture Reference

Blockchain Automation Framework Documentation, Release 0.4.0

Components

Figure:
Hyperledger Besu Components

Docker Images

The Blockchain Automation Framework uses the officially published Besu Docker images from hub.docker.com. The
following Besu Images are used by the Blockchain Automation Framework.

• besu - Besu Peer and Validator Node

• orion - Orion Transaction Manager

Additionally, following common images are also used:

• alpine-utils - Used as a utility to get crypto from Hashicorp Vault server

Ansible Playbooks

Detailed information on ansible playbooks can be referred here and the execution process can be referred here.

Helm Charts

Detailed information on helm charts can be referred here.

Vault Configuration

The Blockchain Automation Framework stores their crypto immediately in the Hashicorp Vault secrets engine.
The crypto is stored by each organization under path secret/org_namespace - it contains node keys, keystore,
passwords, TM keys, and CA certificates for proxy connections. Optionally, secret_path can be set on the net-
work.yaml to change the secret engine from the default secret/.

The complete key paths in the Vault can be referred here.

10.8. Platform-Specific Reference Guides 247

https://hub.docker.com/u/hyperledger
https://hub.docker.com/r/hyperledger/besu
https://hub.docker.com/r/pegasyseng/orion
https://hub.docker.com/r/hyperledgerlabs/alpine-utils

Blockchain Automation Framework Documentation, Release 0.4.0

10.8.13 Certificate Paths on Vault for Hyperledger Besu Network

• Optionally, secret_path can be set on the network.yaml to change the secret engine from the default
secret/.

For IBFT2 WIP

For Orion

For Root Certificates

Details of Variables

248 Chapter 10. Architecture Reference

CHAPTER 11

Commands Reference

Below are various debugging commands that can be used

11.1 Kubectl related debugging

• To setup KUBECONFIG environment variable

export KUBECONFIG=PATH_TO_CLUSTER_KUBECONFIG_FILE
Ex. export KUBECONFIG=~/.kube/config
/root/.kube/config is the default KUBECONFIG path

• To check the cluster config file being used

kubectl config view

• To check the current context

kubectl config current-context

• To get all pods in a namespace

kubectl get pods -n NAMESPACE
Ex. kubectl get pods -n supplychain-net

• To get all pods in a cluster

kubectl get pods --all-namespaces

• To check description of resource type (pod/service/pvc/HelmRelease)

kubectl describe RESOURCE_TYPE RESOURCE_NAME -n NAMESPACE
Ex. kubectl describe pvc ca-server-db-svc -n carrier-net
Ex. kubectl describe sa vault-reviewer -n carrier-net

249

Blockchain Automation Framework Documentation, Release 0.4.0

• To check logs of pod

kubectl logs POD_NAME -n NAMESPACE
Ex. kubectl logs flux-dev-123r45 -n default

• To check logs of container within a pod

kubectl logs POD_NAME -c CONTAINER_NAME -n NAMESPACE
Ex. kubectl logs ca-123r45 -c ca-certs-init -n carrier-net

• To execute a command in a running pod

kubectl exec POD_NAME -n NAMESPACE -- COMMAND_TO_EXECUTE
Ex. kubectl exec ca-tools-12345 -n carrier-net -- ls -a

• To execute a command in a container of a pod

kubectl exec POD_NAME -c CONTAINER_NAME -n NAMESPACE -- COMMAND_TO_EXECUTE
Ex. kubectl exec ca-tools-12345 -c ca-tools -n carrier-net -- ls -a

11.2 Vault related debugging

• To access vault

export VAULT_ADDR=
export VAULT_TOKEN=
vault read PATH_IN_VAULT
Ex. vault read /secret/crypto/ordererOrganizations/carrier-net/ca/carrier-net-CA.
→˓key

• To list all enabled secrets engines with detailed output

vault secrets list -detailed

• To enable an auth method at a given path

vault auth enable -path PATH
Ex. vault auth enable -path authpath

• To delete data on a given path in the key/value secrets engine

vault kv delete PATH
Ex. vault kv delete secret/creds

11.3 Helm related debugging

• To list down all helm releases

helm ls

• To delete an existing helm installation

250 Chapter 11. Commands Reference

Blockchain Automation Framework Documentation, Release 0.4.0

helm uninstall HELM_RELEASE_NAME -n NAMESPACE
Ex. helm uninstall carrier-ca -n carrier-ns

11.4 Docker related debugging

• To login to docker registry

docker login --username USERNAME --password PASSWORD URL
Ex. docker login --username abcd --password abcd index.docker.io/hyperledgerlabs

• To pull images from docker registry

docker pull IMAGE_NAME:TAG
Ex. docker pull alpineutils:1.0

• To push images to docker registry

docker push IMAGE_NAME:TAG
Ex. docker push alpineutilstest:1.0

• To build an image from Dockerfile

cd FOLDER_TO_DOCKERFILE
docker build -t IMAGE_NAME:TAG -f DOCKERFILE_PATH PATH_TO_BUILD_CONTEXT
Ex. docker build -t alpineutilstest:1.0 -f Dockerfile .

11.5 Quorum related debugging

To login to a quorum node

kubectl exec -it POD_NAME -n POD_NAMESPACE -c quorum -- geth attach "http://
→˓localhost:RPC_PORT"
Ex. kubectl exec -it carrier-0 -n carrier-ns -c quorum -- geth attach "http://
→˓localhost:8546"

Get all the paritipants present in the network after logging into the node (for raft consensus based cluster)

raft.cluster

Get node information (after logging into the node)

admin.nodeInfo

Get the peers attached to the current node (after loggin into the node)

admin.peers

Get the account details (after logging into the node)

eth.accounts

Get retrieves the list of authorized validators at the specified block (for ibft consensus based cluster)

11.4. Docker related debugging 251

Blockchain Automation Framework Documentation, Release 0.4.0

istanbul.getValidators(blockHashOrBlockNumber)

11.6 Indy related debugging

To access indy cli, in any terminal

indy-cli

To create a pool

pool create local-pool gen_txn_file=<path of the genesis file>

To connect the pool

pool connect <pool name>

To create a wallet

wallet create <wallet name> <key>

To open a wallet

wallet open <wallet name> <key>

To list the wallets

wallet list

To delete a wallet

wallet delete <wallet name>

To create a new did

did import <did file>

did new

To create a pool

pool create <pool name> gen_txn_file=<pool_genesis_path>

To open a pool

pool connect <pool name>

To list the pool

pool list

To execute a transaction on ledger

ledger nym did=<did name> verkey=<key detail> role=<role name>

To get the transaction details

252 Chapter 11. Commands Reference

Blockchain Automation Framework Documentation, Release 0.4.0

ledger get-nym did=<did name>

11.6. Indy related debugging 253

Blockchain Automation Framework Documentation, Release 0.4.0

254 Chapter 11. Commands Reference

CHAPTER 12

Frequently Asked Questions

12.1 1.FAQs for Getting Started

12.1.1 Who are the target users?

In this project, it is assumed that a user would fall into either a category of Operators or Developers. However, this is
not saying that technicians such as Solution/Tech Archs who have more expertise in wider areas are not eligible users,
e.g. Blockchain or Distributed Ledger Technology (DLT). On the contrary, a user who has proper technical knowledge
on those areas will find the usage of the Blockchain Automation Framework (BAF) repository mentioned in the tutorial
on this website to be more straightforward. For people new to these areas, they might find a deep learning curve before
using or even contributing back to this repository. If a user is from a non-tech background, but would still like to find
out how BAF could accelerate set-up of a new production-scale DLT network, the Introduction section is the right start
point.

(1) Operators: An operator is a System Operator that would work as a Deployment Manager, who has strong tech-
nical knowledge on cloud architecture and DevOps but basic DLT. An operator might be a decision maker in a new
DLT/Blockchain project, and would be responsible for the ongoing stability of the organization’s resources and ser-
vices as well as set-up and maintenance of one or more applications for the organization.

A common scenario that an operator would like to leverage the Blockchain Automation Framework repository might
be that s/he has been asked to use a DLT/Blockchain technology for a business case, but s/he does not know where/how
to start. S/he might have limited budget, and might not have all the technical skills in the team and was overwhelmed
by the time it would take for the solution to be created.

Unique values in scenarios like this provisioned by the Blockchain Automation Framework repository are: (a) effi-
ciency and rapid deployment (b) consistent quality (c) open-source (d) cloud infrastructure independence (e) optimiza-
tion via scalability, modularity and security and (f) accelerated go-to-market.

Essentially, an operator would be able to set up a large-size DLT/Blockchain network in a production environment by
using this repository as per the tutorials in this website along with the instructions in the readme files in the repository.
The network requirements such as which DLT/Blockchain platform (e.g. Fabric/Corda) and which cloud platform
(e.g. AWS/GCP/Azure/DigitalOcean etc) would be used should have been pre-determined already before using this
repository. The operator would ensure that the Blockchain Automation Framework repo is set up and deployed prop-

255

Blockchain Automation Framework Documentation, Release 0.4.0

erly. Eventually, BAF would speed up the whole DLT/Blockchain network set-up process and would require less
DLT/Blockchain developers enabling the operator to retain the budgets and man-power for other activities.

(2) Developers: A developer can be a DevOps or Full Stack Developer who would have knowledge on multiple
programming languages, basic knowledge of DLT/Blockchain networks and smart contracts, Ansible and DevOps.
Daily work might include developing applications and using DevOps tools.

A common scenario that a developer would like to use this repo might be that s/he would like to gain knowledge
on production-scale DLT/Blockchain development, but might not have enough technical skills and experiences yet.
Learing knowledge from the existing poorly-designed architecture would be time-consuming and fruitless.

The Blockchain Automation Framework provisions its unique values to the developer that s/he now has an opportunity
to learn how different sets of cutting-edge technologies leveraged in this repository are combined in use such as
reusable architecture patterns, reusable assets including APIs or microservices design. The architecture design in
this repository has been fully tested and demonstrated as a high-quality one known for a fact that it has been being
improved continously through the technical experts’ rich experiences. The developer could try to use this repository to
set up a small-size DLT/Blockchain network to see how it works and gradually pick up new skills across Blockchain,
DevOps, etc.

Furthermore, the developer could even show the maturity of skills to contribute back to this project. Contributions
can include but not limited to (1) suggest or add new functionalities (2) fix various bugs and (3) organize hackthon or
developer events for the Blockchain Automation Framework in the future.

12.1.2 What is the Blockchain Automation Framework and how could it help me?

In simple words, the Blockchain Automation Framework works as an accelerator to help organizations set up a
production-scale DLT network (currently supports Corda, Fabric, Indy, Besu and Quorum) with a single network.yaml
file used for Fabric or Corda or Quorum to be configured in this project. It can work in managed Kubernetes Clus-
ters which has been fully tested in AWS Elastic Kubernetes Services (EKS), and should also work in a non-managed
Kubernetes Cluster in theory. For detailed information, please see the Welcome page.

12.1.3 How do I find more about the Blockchain Automation Framework?

Normally, when a user sees information in this section, it means that s/he has already known the existence of the
Blockchain Automation Framework project, at least this readthedocs website. Basically, this website provisions a
high-level background information of how to use the Blockchain Automation Framework GitHub repository. For
detailed step-by-step instructions, one should go to the Blockchain Automation Framework’s GitHub repository and
find the readme files for a further reading. Upon finishing reading the tutorials in this website, one should be able to
analyse whether the Blockchain Automation Framework would be the right solution in your case and reach a decision
to use it or not.

12.1.4 How much would Blockchain Automation Framework cost? How much
would it cost to run Blockchain Automation Framework on a cloud platform?

As an open source repository, there will be no cost at all to use the Blockchain Automation Framework. However, by
running the Blockchain Automation Framework repository on a cloud platform, there might be cost by using a cloud
platform and it will depend on which cloud services you are going to use.

12.1.5 Who can support me during this process and answer my questions?

One could raise questions in the Github repository and the Blockchain Automation Framework maintainers will give
their best supports at early stages. Later on, when the open community matures, one would expect to get support from
people in the community as well.

256 Chapter 12. Frequently Asked Questions

Blockchain Automation Framework Documentation, Release 0.4.0

12.1.6 Is there any training provided? If so, what kind of training will be included?

Unfortunately, there are no existing training for using the Blockchain Automation Framework yet, because we are not
sure about the potential size of the community and what types of training people would look forward to. However, we
do aware that trainings could happen, if there would be a large number of same or similar questions or issues raised
by new users, and if we would have a large amount of requests like this in the future.

12.1.7 Can I add/remove one or more organisations as DLT nodes in a running
DLT/Blockchain network by using the Blockchain Automation Framework?

Yes, you can add additional nodes to a running DLT/Blockchain network using the Blockchain Automation Frame-
work (BAF). Unfortunately, BAF does not support removing nodes in a running DLT/Blockchain network, but this
significant feature is in our future roadmap, and we will add this feature in a future release.

12.1.8 Does the Blockchain Automation Framework support multiple versions of
Fabric and Corda? What are the minimum versions for Fabric and Corda
supported in the Blockchain Automation Framework?

The Blockchain Automation Framework currently only supports version 1.4.8 & 2.2.2 for Fabric and version 4.1
and 4.4 for Corda as minimum versions, and will only support future higher versions for Fabric and Corda. Corda
Enterprise 4.7 is available as per latest release. Please check the latest releases for version upgrades and deprecations.

12.2 2.FAQs for Operators Guide

12.2.1 What is the minimal infrastructure set-up required to run the Blockchain Au-
tomation Framework?

To run the Blockchain Automation Framework repository, you need to have a managed/non-managed Kubernetes
clusters ready as well as an unsealed Hashicorp Vault service available.

12.2.2 What would be the recommended/required cloud service?

We recommand to use Cloud Services such as Aamzon Web Services (AWS), Microsoft Azure, Google Cloud Platform
(GCP) and DigitalOcean (DO) as their managed Kubernetes clusters services are being or will be tested for this
repository. We have fully tested this repository in AWS, and testing it on Azure, GCP, DO is in our future roadmap.

12.2.3 Do I have to use AWS?

No, AWS is not mandatory, but is recommended because it is the first cloud platform we have tested on. Theoretically,
the Blockchain Automation Framework repository should work in any cloud platforms as long as a Kubernetes Cluster
service is provisioned, but there is no 100% guarantee it will work, since there might be unseen/unknown features in
these managed Kubernetes clusters environments we are not aware of.

12.2.4 Are there any pre-requisites to run the Blockchain Automation Framework?

Yes, you can find them on this page.

12.2. 2.FAQs for Operators Guide 257

https://github.com/hyperledger-labs/blockchain-automation-framework/releases

Blockchain Automation Framework Documentation, Release 0.4.0

12.2.5 How to configure HashiCorp Vault and Kubernetes?

Please see this page for details.

12.2.6 I’m using Windows machine, can I run the Blockchain Automation Frame-
work on it?

The Blockchain Automation Framework repository relies a lot on using Ansible, which might not work in Windows
machines. Please check Ansible website for more information.

12.2.7 How do I configure a DLT/Blockchain network?

The network.yaml file is the main file to be configured to set up a DLT/Blockchain network. This page gives the links
for a user to pick up knowledge of how to configure this file for Fabric and Corda first (see the two “Configuration
file specification” sections for each DLT/Blockchain platform). Having this knowledge will then enable a user to
understand how to use this file in the “Setting up DLT network” section.

12.2.8 How can I test whether my DLT/Blockchain network are configured and de-
ployed correctly?

Please see this page for detials.

12.2.9 How/Where can I request for new features, bugs and get feedback?

One could request a new feature on the Github repository for now. In the future, people might use Jira or Slack to do
the same as well.

12.2.10 Are CI/CD pipeline tools a mandatory to use the Blockchain Automation
Framework?

No, CI/CD pipeline tools like Jenkins are not mandatory, but it could help a user automate the set-up or testing of a
new DLT/Blockchain network in different environments, once a user has a good understanding of using it. We have
the main Jenkinsfile in automation folder which can be taken as a template.

12.2.11 Is it required to run Ansible in a particular machine like AWS EC2?

No, a user should be able to run the Ansible command on any machine as long as Ansible command CLI is installed.

12.2.12 Is there an example ansible_hosts file?

Yes, you can find an example ansible_hosts file here. The configuration in this file means that all Ansible commands
will be run in the same machine that works as both an Ansible client and server machine.

12.2.13 Can I specify the tools versions such as kubectl, helm in this project?

Yes, you can specify tools versions like kubectl, helm, HashiCorp Vault, AWS-authenticator in the playbook
environment-setup.yaml.

258 Chapter 12. Frequently Asked Questions

./gettingstarted.html#ansible
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/inventory/ansible_provisioners
https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/environment-setup.yaml

Blockchain Automation Framework Documentation, Release 0.4.0

12.2.14 How would system react if we plan to update tools versions (e.g. kubectl,
helm)?

Honestly speaking, we don’t know. The latest version Blockchain Automation Framework has been tested on specific
client versions of these tools, see below: (1) Kubectl: v1.14.2 for Kubernetes 1.14, v1.16.13 for Kubernetes 1.16 (2)
Helm: v2.14.1 for Kubernetes 1.14, v2.16.10 for Kubernetes 1.16 (3) HashiCorp Vault: v1.7.0 (4) AWS-Authenticator:
v1.10.3

It is assumed that newer versions of these tools would be backward compatible, which is beyond our control. One can
raise a new ticket to the Blockchain Automation Framework GitHub repository, if any major updates would break the
system down.

12.2.15 Why does the Flux K8s pod get a permission denied for this Blockchain
Automation Framework GitHub repository?

This usually means that the private key that you have used in your network.yaml for gitops does not have access to the
GitHub repository. The corresponding public key must be added to your GitHub Account (or other git repository that
you are using). Details can be found here.

12.2.16 Why does the flux-helm-operator keep on reporting “Failed to list
*v1beta1.HelmRelease: the server could not find the requested resource
(get helmreleases.flux.weave.works)”?

The HelmRelease CustomResourceDefinition (CRD) was missing from the cluster, according to
https://github.com/fluxcd/flux, the following command has to be used to deploy it:

kubectl apply -f https://raw.githubusercontent.com/fluxcd/flux/helm-0.10.1/deploy-
→˓helm/flux-helm-release-crd.yaml

12.3 3.FAQs for Developer Guide

12.3.1 How do I contribute to this project?

• Guide on BAF contribution

• Details on creating pull request on github can be found in this link.

12.3.2 Where can I find the Blockchain Automation Framework’s coding standards?

TBD

12.3.3 How can I engage in the Blockchain Automation Framework community for
any events?

Connect us on Rocket Chat

12.3. 3.FAQs for Developer Guide 259

https://github.com/hyperledger-labs/blockchain-automation-framework/tree/main/platforms/shared/configuration/
https://blockchain-automation-framework.readthedocs.io/en/latest/contributing.html
https://help.github.com/en/articles/about-pull-requests
https://chat.hyperledger.org/channel/blockchain-automation-framework

Blockchain Automation Framework Documentation, Release 0.4.0

260 Chapter 12. Frequently Asked Questions

CHAPTER 13

Glossary

13.1 General

This sections lists the general terms that are used in the Blockchain Automation Framework.

13.1.1 Ansible

Ansible is an open-source software provisioning, configuration management, and application-deployment tool. It runs
on many Unix-like systems, and can configure both Unix-like systems as well as Microsoft Windows. It includes its
own declarative language to describe system configuration. For more details, refer: Ansible

13.1.2 AWS

Amazon Web Services is a subsidiary of Amazon that provides on-demand cloud computing platforms to individuals,
companies, and governments, on a metered pay-as-you-go basis. For more details, refer: AWS

13.1.3 AWS EKS

Amazon Elastic Container Service for Kubernetes (Amazon EKS) is a managed service that makes it easy for users to
run Kubernetes on AWS without needing to stand up or maintain your own Kubernetes control plane. Since Amazon
EKS is a managed service it handles tasks such as provisioning, upgrades, and patching. For more details, refer: EKS

13.1.4 Blockchain as a Service (BaaS)

Blockchain-as-a-Service platform is a full-service cloud-based solution that enables developers, entrepreneurs, and
enterprises to develop, test, and deploy blockchain applications and smart contracts that will be hosted on the BaaS
platform.

261

https://docs.ansible.com/
https://aws.amazon.com/
https://aws.amazon.com/eks/

Blockchain Automation Framework Documentation, Release 0.4.0

13.1.5 Charts

Helm uses a packaging format called charts. A chart is a collection of files that describe a related set of Kubernetes
resources. A single chart might be used to deploy something simple, like a memcached pod, or something complex,
like a full web app stack with HTTP servers, databases, caches, and so on. For more details, refer: Helm Charts

13.1.6 CI/CD

CI and CD are two acronyms that are often mentioned when people talk about modern development practices. CI is
straightforward and stands for continuous integration, a practice that focuses on making preparing a release easier.
But CD can either mean continuous delivery or continuous deployment, and while those two practices have a lot in
common, they also have a significant difference that can have critical consequences for a business.

13.1.7 CLI

A command-line interface (CLI) is a means of interacting with a computer program where the user (or client) issues
commands to the program in the form of successive lines of text (command lines).

13.1.8 Cluster

In Kubernetes, a cluster consists of at least one cluster Main node and multiple worker machines called nodes. For
more details, refer: Cluster

13.1.9 Deployment

Software deployment is all of the activities that make a software system available for use. The general deployment
process consists of several interrelated activities with possible transitions between them. These activities can occur at
the producer side or at the consumer side or both.

13.1.10 DLT

Distributed Ledger Technology (DLT) is a digital system for recording the transaction of assets in which the transac-
tions and their details are recorded in multiple places at the same time. Unlike traditional databases, distributed ledgers
have no central data store or administration functionality. For more details, refer: DLT

13.1.11 Docker

Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called
containers. Containers are isolated from one another and bundle their own software, libraries and configuration files;
they can communicate with each other through well-defined channels. For more details, refer: Docker

13.1.12 Flux

Flux is the operator that makes GitOps happen in a cluster. It ensures that the cluster config matches the one in git
and automates your deployments. Flux enables continuous delivery of container images, using version control for
each step to ensure deployment is reproducible, auditable and revertible. Deploy code as fast as your team creates it,
confident that you can easily revert if required. For more details, refer: Flux

262 Chapter 13. Glossary

https://helm.sh/docs/developing_charts/
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture
https://en.wikipedia.org/wiki/Distributed_ledger
https://www.docker.com/
https://www.weave.works/oss/flux/

Blockchain Automation Framework Documentation, Release 0.4.0

13.1.13 Git

Git is a distributed version-control system for tracking changes in source code during software development. It is
designed for coordinating work among programmers, but it can be used to track changes in any set of files. Its goals
include speed, data integrity, and support for distributed, non-linear workflows For more details, refer: GIT

13.1.14 Gitops

GitOps is a method used for Continuous Delivery. It uses Git as a single source of truth for infrastructures like
declarative infrastructure and the applications. For more details, refer: Gitops

13.1.15 HashiCorp Vault

HashiCorp Vault is a tool for securely accessing secrets. A secret is anything that you want to tightly control access
to, such as API keys, passwords, or certificates. Vault provides a unified interface to any secret, while providing tight
access control and recording a detailed audit log. For more details, refer: Vault

13.1.16 HashiCorp Vault Client

A Vault client is any stand-alone application or integrated add-in that connects to the vault server to access files and
perform vault operations.

13.1.17 Helm

Helm is the first application package manager running atop Kubernetes. It allows describing the application structure
through convenient helm-charts and managing it with simple commands. For more details, refer: Helm

13.1.18 Hosts

A Host is either a physical or virtual machine.

13.1.19 IAM user

An AWS Identity and Access Management (IAM) user is an entity that you create in AWS to represent the person or
application that uses it to interact with AWS. A user in AWS consists of a name and credentials. For more details,
refer: IAM Users

13.1.20 IOT

The Internet of Things is simply “A network of Internet connected objects able to collect and exchange data.” It is
commonly abbreviated as IoT. In a simple way to put it, You have “things” that sense and collect data and send it to
the internet. For more details, refer: IOT

13.1.21 Instance

A “cloud instance” refers to a virtual server instance from a public or private cloud network. In cloud instance
computing, single hardware is implemented into software and run on top of multiple computers.

13.1. General 263

https://git-scm.com/
https://www.weave.works/technologies/gitops/
https://www.vaultproject.io/docs/what-is-vault/index.html
https://helm.sh/docs/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://en.wikipedia.org/wiki/Internet_of_things

Blockchain Automation Framework Documentation, Release 0.4.0

13.1.22 Jenkins

Jenkins is a free and open source automation server written in Java. Jenkins helps to automate the non-human part of
the software development process, with continuous integration and facilitating technical aspects of continuous delivery.
For more details, refer: Jenkins

13.1.23 Jenkins Master

Your main Jenkins server is the master machine called Jenkins Master. For more details, refer: Jenkins Master

13.1.24 Jenkins Slave

A slave is a Java executable that runs on a remote machine. For more details, refer: Jenkins Slave

13.1.25 Jenkins Stages

A stage block in Jenkins defines a conceptually distinct subset of tasks performed through the entire Pipeline (e.g.
“Build”, “Test” and “Deploy” stages), which is used by many plugins to visualize or present Jenkins Pipeline sta-
tus/progress.

13.1.26 Kubeconfig File

A kubeconfig file is a file used to configure access to Kubernetes when used in conjunction with the kubectl command
line tool (or other clients). This is usually referred to an environment variable called KUBECONFIG.

13.1.27 Kubernetes

Kubernetes (K8s) is an open-source container-orchestration system for automating application deployment, scaling,
and management. It was originally designed by Google, and is now maintained by the Cloud Native Computing
Foundation. For more details, refer: Kubernetes

13.1.28 Kubernetes Node

A node is a worker machine in Kubernetes, previously known as a minion. A node may be a VM or physical machine,
depending on the cluster. Each node contains the services necessary to run pods and is managed by the master
components. The services on a node include the container runtime, kubelet and kube-proxy. For more details, refer:
Kubernetes Node

13.1.29 Kubernetes Storage Class

A StorageClass in Kubernetes provides a way for administrators to describe the “classes” of storage they offer. Dif-
ferent classes might map to quality-of-service levels, or to backup policies, or to arbitrary policies determined by the
cluster administrators. For more details, refer: Storage class

264 Chapter 13. Glossary

https://jenkins.io/
https://wiki.jenkins.io/pages/viewpage.action?pageId=75893612
https://wiki.jenkins.io/pages/viewpage.action?pageId=75893612
https://kubernetes.io/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/storage/storage-classes/

Blockchain Automation Framework Documentation, Release 0.4.0

13.1.30 Kubernetes PersistentVolume (PV)

A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned by an administrator or dynam-
ically provisioned using Storage Classes. It is a resource in the cluster just like a node is a cluster resource. PVs
are volume plugins like Volumes, but have a lifecycle independent of any individual pod that uses the PV. For more
details, refer: PVC

13.1.31 Kubernetes Persistent Volume Claim (PVC)

A PVC, binds a persistent volume to a pod that requested it. When a pod wants access to a persistent disk, it will
request access to the claim which will specify the size , access mode and/or storage classes that it will need from a
Persistent Volume. For more details, refer: PVC

13.1.32 PGP signature

Pretty Good Privacy (PGP) is an encryption program that provides cryptographic privacy and authentication for data
communication. PGP is used for signing, encrypting, and decrypting texts, e-mails, files, directories, and whole disk
partitions. For more details, refer: PGP

13.1.33 Playbook

An Ansible playbook is an organized unit of scripts that defines work for a server configuration managed by the
automation tool Ansible. For more details, refer: Playbooks

13.1.34 Pipeline

Jenkins Pipeline (or simply “Pipeline”) is a suite of plugins which supports implementing and integrating continuous
delivery pipelines into Jenkins. A continuous delivery pipeline is an automated expression of your process for getting
software from version control right through to your users and customers. For more details, refer: Pipeline

13.1.35 Roles

Roles provide a framework for fully independent, or interdependent collections of variables, tasks, files, templates, and
modules. In Ansible, the role is the primary mechanism for breaking a playbook into multiple files. This simplifies
writing complex playbooks, and it makes them easier to reuse. For more details, refer: Roles

13.1.36 SCM

Supply Chain Management (SCM) is the broad range of activities required to plan, control and execute a product’s
flow, from acquiring raw materials and production through distribution to the final customer, in the most streamlined
and cost-effective way possible.

13.1.37 SHA256

SHA-256 stands for Secure Hash Algorithm – 256 bit and is a type of hash function commonly used in Blockchain.
A hash function is a type of mathematical function which turns data into a fingerprint of that data called a hash. It’s
like a formula or algorithm which takes the input data and turns it into an output of a fixed length, which represents
the fingerprint of the data. For more details, refer: SHA256

13.1. General 265

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://en.wikipedia.org/wiki/Pretty_Good_Privacy
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html
https://jenkins.io/doc/book/pipeline/
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://en.bitcoinwiki.org/wiki/SHA-256

Blockchain Automation Framework Documentation, Release 0.4.0

13.1.38 Sphinx

Sphinx is a tool that makes it easy to create intelligent and beautiful documentation, written by Georg Brandl and
licensed under the BSD license. It was originally created for the Python documentation, and it has excellent facilities
for the documentation of software projects in a range of languages. For more details, refer: Sphinx

13.1.39 SSH

SSH, also known as Secure Shell or Secure Socket Shell, is a network protocol that gives users, particularly system
administrators, a secure way to access a computer over an unsecured network. SSH also refers to the suite of utilities
that implement the SSH protocol. For more details, refer: SSH

13.1.40 Template

• Ansible: A template in Ansible is a file which contains all your configuration parameters, but the dynamic values
are given as variables. During the playbook execution, depending on the conditions like which cluster you are
using, the variables will be replaced with the relevant values. For more details, refer: Ansible Template

• Helm Charts: In Helm Charts, Templates generate manifest files, which are YAML-formatted resource descrip-
tions that Kubernetes can understand. For more details, refer: Helm Charts Template

13.1.41 TLS

Transport Layer Security, and its now-deprecated predecessor, Secure Sockets Layer, are cryptographic protocols
designed to provide communications security over a computer network. For more details, refer: TLS

13.1.42 YAML

YAML (”YAML Ain’t Markup Language”) is a human-readable data-serialization language. It is commonly used for
configuration files and in applications where data is being stored or transmitted. YAML targets many of the same
communications applications as Extensible Markup Language but has a minimal syntax which intentionally differs
from SGML. For more details, refer: YAML

13.2 Hyperledger-Fabric

This section lists specific terms used in Hyperledger Fabric

13.2.1 CA

The Hyperledger Fabric CA is a Certificate Authority (CA) for Hyperledger Fabric. It provides features such as:
registration of identities, or connects to LDAP as the user registry. For more details, refer: CA

13.2.2 CA Server

Fabric CA server is used to host one or more Certification Authorities (Fabric CA) for your Fabric Network (based on
the MSPs)

266 Chapter 13. Glossary

http://www.sphinx-doc.org/en/master/
https://en.wikipedia.org/wiki/Secure_Shell
https://docs.ansible.com/ansible/latest/modules/template_module.html
https://helm.sh/docs/chart_template_guide/
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/YAML
https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/

Blockchain Automation Framework Documentation, Release 0.4.0

13.2.3 Chaincode

Chaincode is a piece of code that is written in one of the supported languages such as Go or Java. It is installed and
instantiated through an SDK or CLI onto a network of Hyperledger Fabric peer nodes, enabling interaction with that
network’s shared ledger. For more details, refer: Chaincode

13.2.4 Channel

A Hyperledger Fabric channel is a private “subnet” of communication between two or more specific network members,
for the purpose of conducting private and confidential transactions. A channel is defined by members (organizations),
anchor peers per member, the shared ledger, chaincode application(s) and the ordering service node(s). For more
details, refer: Channel

13.2.5 Channel Artifacts

Artifacts in Hyperledger are channel configuration files which are required for the Hyperledger Fabric network. They
are generated at the time of network creation. For more details, refer: Channel Artifacts

13.2.6 Instantiate

Instantiating a chaincode means to initialize it with initial values. For more details, refer: Instantiating Chaincode

13.2.7 MSP

Hyperledger Fabric includes a Membership Service Provider (MSP) component to offer an abstraction of all crypto-
graphic mechanisms and protocols behind issuing and validating certificates, and user authentication. For more details,
refer: MSP

13.2.8 Orderer

Orderer peer is considered as the central communication channel for the Hyperledger Fabric network. Orderer
peer/node is responsible for consistent Ledger state across the network. Orderer peer creates the block and deliv-
ers that to all the peers For more details, refer: Orderer

13.2.9 Peer

Hyperledger Fabric is a permissioned blockchain network that gets set by the organizations that intend to set up a
consortium. The organizations that take part in building the Hyperledger Fabric network are called the “members”.
Each member organization in the blockchain network is responsible to set up their peers for participating in the
network. All of these peers need are configured with appropriate cryptographic materials like Certificate Authority
and other information. For more details, refer: Peer

13.2.10 Zkkafka

Kafka is primarily a distributed, horizontally-scalable, fault-tolerant, commit log. A commit log is basically a data
structure that only appends. No modification or deletion is possible, which leads to no read/write locks, and the
worst case complexity O(1). There can be multiple Kafka nodes in the blockchain network, with their corresponding
Zookeeper ensemble. For more details, refer: zkkafka

13.2. Hyperledger-Fabric 267

https://hyperledger-fabric.readthedocs.io/en/release-1.4/chaincode.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/channels.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/channel_update_tutorial.html
https://hyperledger-fabric.readthedocs.io/en/stable/install_instantiate.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/msp.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/peers/peers.html

Blockchain Automation Framework Documentation, Release 0.4.0

13.2.11 RAFT

RAFT is distributed crash Fault tolerance consensus algorithm which makes sure that in the event of failure, the
system should be able to take a decision and process clients request. In technical term Raft is a consensus algorithm
for managing a replicated log. Replicated log is a part of Replicated state machine. For more details, refer: raft

13.3 R3 Corda

This section lists specific terms used in R3 Corda.

13.3.1 Compatibility Zone

Every Corda node is part of a “zone” (also sometimes called a Corda network) that is permissioned. Production
deployments require a secure certificate authority. We use the term “zone” to refer to a set of technically compatible
nodes reachable over a TCP/IP network like the internet. The word “network” is used in Corda but can be ambiguous
with the concept of a “business network”, which is usually more like a membership list or subset of nodes in a zone
that have agreed to trade with each other. For more details, refer Compatibility Zone.

13.3.2 CorDapp

CorDapps (Corda Distributed Applications) are distributed applications that run on the Corda platform. The goal of a
CorDapp is to allow nodes to reach agreement on updates to the ledger. They achieve this goal by defining flows that
Corda node owners can invoke over RPC. For more details, refer: CorDapp

13.3.3 Corda Node

A Corda node is a JVM run-time environment with a unique identity on the network that hosts Corda services and
CorDapps.For more details, refer Corda Node.

13.3.4 Corda Web Server

A simple web server is provided that embeds the Jetty servlet container. The Corda web server is not meant to be used
for real, production-quality web apps. Instead it shows one example way of using Corda RPC in web apps to provide
a REST API on top of the Corda native RPC mechanism.

13.3.5 Doorman

The Doorman CA is a Certificate Authority R3 Corda. It is used for day-to-day key signing to reduce the risk of the
root network CA’s private key being compromised. This is equivalent to an intermediate certificate in the web PKI.
For more details, refer Doorman.

13.3.6 NetworkMap

The Network Map Service accepts digitally signed documents describing network routing and identifying information
from nodes, based on the participation certificates signed by the Identity Service, and makes this information available
to all Corda Network nodes. For more details, refer Networkmap.

268 Chapter 13. Glossary

https://hyperledger-fabric.readthedocs.io/en/release-2.0/orderer/ordering_service.html#raft-concepts
https://docs.corda.net/compatibility-zones.html
https://docs.corda.net/cordapp-overview.html
https://docs.corda.net/key-concepts-node.html
https://docs.corda.net/releases/M16-RC04/permissioning.html
https://docs.corda.net/network-map.html

Blockchain Automation Framework Documentation, Release 0.4.0

13.3.7 Notary

The Corda design separates correctness consensus from uniqueness consensus, and the latter is provided by one or
more Notary Services. The Notary will digitally sign a transaction presented to it, provided no transaction refer-
ring to any of the same inputs has been previously signed by the Notary, and the transaction timestamp is within
bounds.Business network operators and network participants may choose to enter into legal agreements which rely on
the presence of such digital signatures when determining whether a transaction to which they are party, or upon the
details of which they otherwise rely, is to be treated as ‘confirmed’ in accordance with the terms of the underlying
agreement. For more details, refer Corda Notaries.

13.4 Hyperledger-Indy

This section lists specific terms used in Hyperledger-Indy.

13.4.1 Admin DID

A decentralized identifier for Admin as defined by the DID Data Model and Generic Syntax specification.

13.4.2 Admin Seed

Seed can be any randomly chosen 32 byte value. There is no predefined format for the seed and it used to initializing
keys. The seed used for Admin key is called an admin seed.

13.4.3 Agency

A service provider that hosts Cloud Agents and may provision Edge Agents on behalf of a Ledger’s Entities.

13.4.4 Agent

A software program or process used by or acting on behalf of a Ledger’s Entity to interact with other Agents or, via
a Ledger’s Client component, directly with the Ledger. Agents are of two types: Edge Agents run at the edge of the
network on a local device, while Cloud Agents run remotely on a server or cloud hosting service. Agents typically
have access to a Wallet in order to perform cryptographic operations on behalf of the Ledger’s Entity they represent.

13.4.5 Dependent

An Individual who needs to depend on a Guardian to administer the Individual’s Ledger Identities. Under a Trust
Framework, all Dependents may have the right to become Independents. Mutually exclusive with Independent.

13.4.6 Developer

An Identity Owner that has legal accountability (in a scenario where there is a Trust Framework) for the functionality
of an Agent, or for software that interacts with an Agent or the Ledger, to provide services to a Ledger Entity.

13.4. Hyperledger-Indy 269

https://docs.corda.net/key-concepts-notaries.html

Blockchain Automation Framework Documentation, Release 0.4.0

13.4.7 DID

A decentralized identifier as defined by the DID Data Model and Generic Syntax specification. DIDs enable interop-
erable decentralized self-sovereign identity management. An Identity Record is associated with exactly one DID. A
DID is associated with exactly one DDO.

13.4.8 Domain Genesis

Domain genesis is a genesis file used to initialise the network and may populate network with some domain data.

13.4.9 Endorser

Endorser has the required rights to write on a ledger. Endorser submits a transaction on behalf of the original author.

13.4.10 Genesis Record

The first Identity Record written to the Ledger that describes a new Ledger Entity. For a Steward, the Genesis Record
must be written by a Trustee. For an Independent Identity Owner, the Genesis Record must be written by a Trust
Anchor. For a Dependent Identity Owner, the Genesis Record must be written by a Guardian.

13.4.11 Identity

A set of Identity Records, Claims, and Proofs that describes a Ledger Entity. To protect privacy: a) an Identity Owner
may have more than one Ledger Identity, and b) only the Identity Owner and the Relying Party(s) with whom an
Identity is shared knows the specific set of Identity Records, Claims, and Proofs that comprise that particular Identity.

13.4.12 Identity Owner

A Ledger Entity who can be held legally accountable. An Identity Owner must be either an Individual or an Organi-
zation. Identity owners can also be distinguised as Independent Identity Owner and Dependent Identity Owner based
on the writer of the Genesis record, for an Independent Identity Owner the Genesis Record must be written by a Trust
Anchor and in case of a Dependent Identity Owner the the Genesis Record must be written by a Guardian.

13.4.13 Identity Record

A transaction on the Ledger that describes a Ledger Entity. Every Identity Record is associated with exactly one DID.
The registration of a DID is itself an Identity Record. Identity Records may include Public Keys, Service Endpoints,
Claim Definitions, Public Claims, and Proofs. Identity Records are Public Data.

13.4.14 Identity Role

Each identity has a specific role in Indy described by one of four roles in Indy. These roles are Trustee, Steward,
Endorser and Netork Monitor.

13.4.15 Issuer Key

The special type of cryptographic key necessary for an Issuer to issue a Claim that supports Zero Knowledge Proofs.

270 Chapter 13. Glossary

Blockchain Automation Framework Documentation, Release 0.4.0

13.4.16 Ledger

The ledger in Indy is Indy-plenum based. Provides a simple, python-based, immutable, ordered log of transactions
backed by a merkle tree. For more details, refer Indy-plenum

13.4.17 NYM Transaction

NYM record is created for a specific user, Trust Anchor, Sovrin Stewards or trustee. The transaction can be used for
creation of new DIDs, setting and Key Rotation of verification key, setting and changing of roles.

13.4.18 Pairwise-Unique Identifier

A Pseudonym used in the context of only one digital relationship (Connection). See also Pseudonym and Verinym.

13.4.19 Pool Genesis

Pool genesis is a genesis file used to initialise the network and may populate network with some pool data.

13.4.20 Private Claim

A Claim that is sent by the Issuer to the Holder’s Agent to hold (and present to Relying Parties) as Private Data but
which can be verified using Public Claims and Public Data. A Private Claim will typically use a Zero Knowledge
Proof, however it may also use a Transparent Proof.

13.4.21 Private Data

Data over which an Entity exerts access control. Private Data should not be stored on a Ledger even when encrypted.
Mutually exclusive with Public Data.

13.4.22 Private Key

The half of a cryptographic key pair designed to be kept as the Private Data of an Identity Owner. In elliptic curve
cryptography, a Private Key is called a signing key.

13.4.23 Prover

The Entity that issues a Zero Knowledge Proof from a Claim. The Prover is also the Holder of the Claim.

13.4.24 Pseudonym

A Blinded Identifier used to maintain privacy in the context on an ongoing digital relationship (Connection).

13.4.25 Steward

An Organization, within a Trust Framework, that operate a Node. A Steward must meet the Steward Qualifications
and agree to the Steward Obligations defined in the a Trust Framework. All Stewards are automatically Trust Anchors.

13.4. Hyperledger-Indy 271

https://github.com/hyperledger/indy-plenum/

Blockchain Automation Framework Documentation, Release 0.4.0

13.4.26 Trust Anchor

An Identity Owner who may serve as a starting point in a Web of Trust. A Trust Anchor has two unique privileges:
1) to add new Identity Owners to a Network, and 2) to issue Trust Anchor Invitations. A Trust Anchor must meet the
Trust Anchor Qualifications and agree to the Trust Anchor Obligations defined in a Trust Framework. All Trustees
and Stewards are automatically Trust Anchors.

13.4.27 Verinym

A DID authorized to be written to an Indy-powered Ledger by a Trust Anchor so that it is directly or indirectly
associated with the Legal Identity of the Identity Owner. Mutually exclusive with Anonym.

13.4.28 Wallet

A software module, and optionally an associated hardware module, for securely storing and accessing Private Keys,
Master Secrets, and other sensitive cryptographic key material and optionally other Private Data used by an Entity
on Indy. A Wallet may be either an Edge Wallet or a Cloud Wallet. In Indy infrastructure, a Wallet implements the
emerging DKMS standards for interoperable decentralized cryptographic key management.

13.4.29 Zero Knowledge Proof

A Proof that uses special cryptography and a Master Secret to permit selective disclosure of information in a set of
Claims. A Zero Knowledge Proof proves that some or all of the data in a set of Claims is true without revealing any
additional information, including the identity of the Prover. Mutually exclusive with Transparent Proof.

13.5 Quorum

This section lists specific terms used in Quorum.

13.5.1 Constellation

Haskell implementation of a general-purpose system for submitting information in a secure way. it is comparable
to a network of MTA (Message Transfer Agents) where messages are encrypted with PGP. Contains Node (Private
transaction manager) and the Enclave.

13.5.2 Enode

Enode is a url which identifies a node, it is generated using the node keys.

13.5.3 Istanbul Tool

Istanbul tool is istanbul binary compiled from the code repository. The tool is used to generate the configuration files
required for setting up the Quorum network with IBFT consensus.

272 Chapter 13. Glossary

Blockchain Automation Framework Documentation, Release 0.4.0

13.5.4 Node Keys

Node keys consist of node private and node public keys. Those keys are required by the binaries provided by Quorum
to boot the node and the network.

13.5.5 Private Transactions

Private Transactions are those Transactions whose payload is only visible to the network participants whose public
keys are specified in the privateFor parameter of the Transaction . privateFor can take multiple addresses in a comma
separated list.

13.5.6 Public Transactions

Public Transactions are those Transactions whose payload is visible to all participants of the same Quorum network.
These are created as standard Ethereum Transactions in the usual way.

13.5.7 Quorum Node

Quorum Node is designed to be a lightweight fork of geth in order that it can continue to take advantage of the R&D
that is taking place within the ever growing Ethereum community. Quorum Node is running geth, a Go-Etherium
client with rpc endpoints. It supports raft and IBFT pluggable consensus and private and permissioned transactions.

13.5.8 State

Quorum supports dual state, Public State(accessible by all nodes within the network) and Private State(only accessible
by nodes with the correct permissions). The difference is made through the use of transactions with encrypted (private)
and non-encrypted payloads (public). Nodes can determine if a transaction is private by looking at the v value of the
signature. Public transactions have a v value of 27 or 28, private transactions have a value of 37 or 38.

13.5.9 Static nodes

Static nodes are nodes we keep reference to even if the node is not alive. So that when the nodes comes alive, then
we can connect to it. Hostnames are permitted here, and are resolved once at startup. If a static peer goes offline and
its IP address changes, then it is expected that that peer would re-establish the connection in a fully static network, or
have discovery enabled.

13.5.10 Tessera

Java implementation of a general-purpose system for submitting information in a secure way. it is comparable to
a network of MTA (Message Transfer Agents) where messages are encrypted with PGP. Contains Node (Private
transaction manager) and The Enclave.

13.5.11 The Enclave

Distributed Ledger protocols typically leverage cryptographic techniques for transaction authenticity, participant au-
thentication, and historical data preservation (i.e. through a chain of cryptographically hashed data.) In order to achieve

13.5. Quorum 273

Blockchain Automation Framework Documentation, Release 0.4.0

a separation of concerns, as well as to provide performance improvements through parallelization of certain crypto-
operations, much of the cryptographic work including symmetric key generation and data encryption/decryption is
delegated to the Enclave.

13.5.12 Transaction Manager

Quorum’s Transaction Manager is responsible for Transaction privacy. It stores and allows access to encrypted trans-
action data, exchanges encrypted payloads with other participant’s Transaction Managers but does not have access to
any sensitive private keys. It utilizes the Enclave for cryptographic functionality (although the Enclave can optionally
be hosted by the Transaction Manager itself.)

274 Chapter 13. Glossary

CHAPTER 14

Contributing

Thank you for your interest to contribute to BAF!

We welcome contributions to the Blockchain Automation Framework Project in many forms, and there’s always plenty
to do!

First things first, please review the Hyperledger Code of Conduct before participating and please follow it in all your
interactions with the project.

You can contibute to BAF, as a user or/and as a developer.

14.1 As a user:

Making Feature/Enhancement ProposalsReporting bugs

14.2 As a developer:

Consider picking up a “help-wanted” or “good-first-issue” task

If you can commit to full-time/part-time development, then please contact us on our Rocketchat channel to work
through logistics!

Please visit the Developer Guide in the docs to learn how to make contributions to this exciting project.

14.3 Pull Request Process :

For source code integrity , Blockchain Automation Framework GitHub pull requests are accepted from forked reposi-
tories only. There are also quality standards identified and documented here that will be enhanced over time.

1. Fork BAF via Github UI

2. Clone the fork to your local machine

275

https://wiki.hyperledger.org/display/HYP/Hyperledger+Code+of+Conduct
https://github.com/hyperledger-labs/blockchain-automation-framework/issues/new?assignees=&labels=enhancement&template=feature_request.md&title=
https://github.com/hyperledger-labs/blockchain-automation-framework/issues/new?assignees=&labels=bug&template=bug_report.md&title=
https://github.com/hyperledger-labs/blockchain-automation-framework/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22
https://github.com/hyperledger-labs/blockchain-automation-framework/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22
https://chat.hyperledger.org/channel/blockchain-automation-framework

Blockchain Automation Framework Documentation, Release 0.4.0

3. Complete the desired changes and where possible test locally (more detail to come here)

4. Commit your changesi) Make sure you sign your commit using git commit -s for more information see hereii)
Make sure your commit message follows Conventional Commits syntax; this aids in release notes generation

5. Push your changes to your feature branch

6. Initiate a pull request from your fork to the base repository (develop branch , unless it is a critical bug, in that
case initiate to the main branch)

7. Await DCO & linting quality checks (CI to come soon), as well as any feedback from reviewers.

8. Work on the feedbacks to revise the PR if there are any comments

9. If not, the PR gets approved , delete feature branch post the merge

NOTE: If you are a regular contributor , please make sure to take the latest pull from the develop branch everytime
before making any pull request , main branch in case of a critical defect / bug .

This work is licensed under a Creative Commons Attribution 4.0 International License.

276 Chapter 14. Contributing

https://gist.github.com/tkuhrt/10211ae0a26a91a8c030d00344f7d11b
https://www.conventionalcommits.org/en/v1.0.0-beta.4/#specification

CHAPTER 15

Maintainers for the Blockchain Automation Framework

This file is the official list of maintainers for the Blockchain Automation Framework project. Changes to this list should
be submitted by submitting a pull request that changes this file, and requesting reviews on that pull request from all of
the current maintainers. This is the list of maintainers, including their github profiles for direct communications:

15.1 License

The Blockchain Automation Framework source code files are made available under the Apache License, Ver-
sion 2.0 (Apache-2.0), located in the LICENSE file. The Blockchain Automation Framework documentation files
are made available under the Creative Commons Attribution 4.0 International License (CC-BY-4.0), available at
http://creativecommons.org/licenses/by/4.0/.

277

	Introduction
	Release notes
	Key Concepts
	Getting Started
	Operations Guide
	Developer Guide
	Sample Usage
	BAF current roadmap
	Compability Matrix
	Architecture Reference
	Commands Reference
	Frequently Asked Questions
	Glossary
	Contributing
	Maintainers for the Blockchain Automation Framework

