

An accelerator for delivering production-ready blockchain solutions

[image: _images/hlf-bevel-color-small.png]
What is Hyperledger Bevel?

Hyperledger Bevel is an automation framework for delivering consistent production ready DLT networks on cloud based infrastructures, enabling teams to deliver without the need to architect the solution from scratch.

Hyperledger Bevel provides 3 key features:

	Security: Bevel provides a secure environment for DLT development. Bevel has best practices of key management and other security features available by default.

	Scalability: Bevel has a scalable network implementation, a user can easily scale the environment and resources according to his/her needs.

	Acceleration: Bevel will help in providing a blockchain solution that drives acceleration up to deployment providing an oppourtunity to participate in those deliveries and drive more services.

It is an accelerator for all the developers to be able to use a DLT network right away.
So with Hyperledger Bevel, users are able to create a DLT environment and know that it is something that will continue to be used as
project management.

Table of Contents:

	Introduction

	Release notes

	Key Concepts

	Getting Started

	Operations Guide

	Developer Guide

	Sample Usage

	Bevel current roadmap

	Compability Matrix

	Architecture Reference

	Commands Reference

	Frequently Asked Questions

	Glossary

	Contributing

	Maintainers for Hyperledger Bevel

Introduction

At its core, blockchain is a new type of data system that maintains and records data in a way that
allows multiple stakeholders to confidently share access to the same data and information. A
blockchain is a type of Distributed Ledger Technology (DLT), meaning it is a data ledger that is
shared by multiple entities operating on a distributed network.

This technology operates by
recording and storing every transaction across the network in a cryptographically linked block
structure that is replicated across network participants. Every time a new data block is created, it
is appended to the end of the existing chain formed by all previous transactions, thus creating a
chain of blocks called the blockchain. This blockchain format contains records of all transactions
and data, starting from the inception of that data structure.

Setting up a new DLT/Blockchain network or maintaining an existing DLT/Blockchain network in a production-scale environment is not straightforward. For the existing DLT/Blockchain platforms, each has its own architecture, which means the same way of setting up one DLT/Blockchain network cannot be applied to others.

Therefore, when blockchain developers are asked to use an unfamiliar DLT/Blockchain platform, it requires significant effort for even experienced technicians to properly setup the DLT/Blockchain network. This is especially true in large-scale production projects across heterogeneous corporate environments which require other key aspects such as security and service availability.

Being aware of the potential difficulty and complexity of getting a production-scale DLT/Blockchain network ready, cloud vendors such as AWS and Azure have provisioned their own managed Blockchain services (aka Blockchain as a Service or BaaS) to help alleviate various pain-points during the process. However, limitations can still be identified in their BaaS solutions, e.g. limited network size, locked to all nodes on a single cloud provider, or limited choice of DLT/Blockchain platform, etc.

Hyperledger Bevel Platform

The objective of Bevel is to provide a consistent means by which developers can deploy production-ready distributed networks across public and private cloud providers. This enables developers to focus on building business applications quickly, knowing that the framework upon which they are building can be adopted by an enterprise IT production operations organization. Bevel is not intended solely to quickly provision development environments which can be done more efficiently with other projects/scripts. Likewise, Hyperledger Bevel is not intended to replace BaaS offerings in the market, but instead, Bevel is an alternative when existing BaaS offerings do not support a consortium’s current set of requirements.

[image: _images/hyperledger-bevel-overview.png]

How is it different from other BaaS?

	Hyperledger Bevel deployment scripts can be reused across cloud providers like AWS, Azure, GCP, DigitalOcean and OpenShift

	Can deploy networks and smart contracts across different DLT/Blockchain platforms

	Supports heterogeneous deployments in a multi-cloud, multi-owner model where each node is completely owned and managed by separate organizations

	Bring Your Own Infrastructure (BYOI) - You provide GIT, Kubernetes cluster(s), and Hashicorp Vault services provisioned to meet your specific requirements and enterprise standards

	No network size limit

	Specifies only the number of organizations and the number of nodes per organization in a network.yaml file uniquely designed in Hyperledger Bevel for a new DLT/Blockchain network set-up and its future maintenance

	Provides a sample supply chain application which runs on multiple DLT/Blockchain platforms that can be used as a reference pattern for how to safely abstract application logic from the underlying DLT/Blockchain platform

What next?

We have been actively searching for partners who need and understand the value of Hyperledger Bevel, who share the vision of building and owning well architected solutions. We wish to work together so as to identify the market needs for those partners, to further reduce the barriers in adoption.

Release notes

Release notes have been moved to GitHub here [https://github.com/hyperledger/bevel/releases].

Key Concepts

This section introduces the key concepts along with their features used within Hyperledger Bevel. This section works as step one that will pave the way for new users to understand the key conceptual building blocks used in Hyperledger Bevel’s architecture design.

	Ansible

	Kubernetes Services

	Helm

	HashiCorp Vault

	GitOps

	Hyperledger Bevel’s Features

Ansible

Ansible [https://docs.ansible.com/ansible/latest/index.html] is an automation command line tool that helps IT technicians easily achieve system configuration, software deployment and other complex tasks in orchestration.

Ansible provisions several types of command line tools such as ansible, ansible-playbook and ansible-galaxy, etc. Each serves different scenarios so that a user can choose the most appropriate one or more to be adopted in the chosen scenario(s).

Below gives a simple description of the three mentioned above, and a user can use the link to find more information for each of them.

	ansible [https://docs.ansible.com/ansible/latest/user_guide/intro_getting_started.html]: it is the simplistic command line tool that enables a user to quickly achieve simple IT tasks, e.g. list one or more local/remote machines’ information.

	ansible-playbook [https://docs.ansible.com/ansible/latest/user_guide/playbooks.html]: it is an advanced command line that will run one or more Ansible playbooks (i.e. YAML files that have all the steps configured to achieve one or more complex tasks). Ansible roles [https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html] are defined to group relavant configurations together that can be resuable in multi playbooks.

	ansible-galaxy [https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html]: it is an advanced command line that can run existing Ansible roles predefined by other users in the Ansible community.

Hyperledger Bevel extensively uses Ansible playbooks along with roles to spin up a DLT/Blockchain network. For instance, to issue certificates for each node in the DLT/Blockchain network, and then put the certificates to HashiCorp Vaults. In Hyperledger Bevel, there are different Ansible playbooks being designed, and the key player that makes the whole DLT/Blockchain network set-up to happen automatically is the roles defined in the playbooks following a specific order.

Kubernetes Services

Container

A Docker Container [https://www.docker.com/resources/what-container] is an ephermeral running process that has all the necessary package dependencies within it. It differentiates from a Docker Image [https://docs.docker.com/v17.09/engine/userguide/storagedriver/imagesandcontainers/#images-and-layers] that is a multi-layered file. A container is much more light-weighted, standalone and resuable compared to a Virtual Machine (VM).

 Helm

Helm

Essentially, Helm [https://helm.sh/] is a package manager for K8s. Helm Charts are configuration files designed for K8s to help define, install and upgrade complex K8s applications.

Helm brings below features:

	Predictable deployments.

	Maintains “Bill of Materials” of all the pods that work together to deliver the application.

	Keeps (forces) a team to stay synchronised.

	Strong version control.

	Easier testing and QA.

	Rollbacks on an application level, not just a one-off pod level.

Hyperledger Bevel uses Helm Charts for designing and configuring the architecture of each DLT/Blockchain platform for its own network set-up.

 HashiCorp Vault

HashiCorp Vault

HashiCorp Vault [https://www.vaultproject.io/] provisions a secure approach to store and gain secret information such as tokens, passwords and certificates.

Hyperledger Bevel relies on Vaults for managing certificates used in each node of a DLT/Blockchain network during the lifecycle of a deployment, and it is a prerequisite that the Vault is installed and unsealed prior to deployment of a DLT/Blockchain network.

Installation

There are two approaches to installing Vault:

	Using a precompiled binary [https://www.vaultproject.io/docs/install/#precompiled-binaries]

	Installing from source [https://www.vaultproject.io/docs/install/#compiling-from-source]

Downloading a precompiled binary is easiest and provides downloads over TLS along with SHA256 sums to verify the binary. Hashicorp also distributes a PGP signature with the SHA256 sums that should be verified.

Securing RPC Communication with TLS Encryption

Securing your cluster with TLS encryption is an important step for production deployments. The recomended tool for vault certificate management is Consul. Hashicorp Consul is a networking tool that provides a fully featured service-mesh control plane, service discovery, configuration, and segmentation.

Consul supports using TLS to verify the authenticity of servers and clients. To enable TLS, Consul requires that all servers have certificates that are signed by a single Certificate Authority (CA). Clients should also have certificates that are authenticated with the same CA.

After generating the necessary client and server certificates, the values.yaml file tls field can be populated with the ca.cert certificates. Populating this field will enable or disable TLS for vault communication if a value present.

The latest documentation on generating tls material with consul can be found at:
[(https://learn.hashicorp.com/consul/security-networking/certificates])

 GitOps

GitOps

GitOps [https://www.weave.works/technologies/gitops/] introduces an approach that can make K8s cluster management easier and also guarantee the latest application delivery is on time.

Hyperledger Bevel uses Weavework’s Flux for the implementation of GitOps and executes an Ansible role called setup/flux [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/roles] defined in its GitHub repo that will:

	Scan for existing SSH Hosts

	Authorize client machine as per kube.yaml

	Add weavework flux repository in helm local repository

	Install flux

 Hyperledger Bevel’s Features

Hyperledger Bevel’s Features

Multi-Cloud service providers support

Hyperledger Bevel’s scripts do not stick to any one of the Cloud service provider. On the contrary, they can be used on any Cloud platform as long as all the prerequisites are met.

Multi-DLT/Blockchain platforms support

Hyperledger Bevel supports an environment of multi-clusters for the spin-up of a DLT/Blockchain network (e.g. Hyperledger Fabric or R3 Corda). Regardless of unique components (e.g. channels and orderers in Fabric, and Doorman, Notary in Corda) designed in each platform which make the DLT/Blockchain ecosystems become heterogeneous, Hyperledger Bevel does remove this complexity and challenge by leveraing a uniquely-designed network.yaml file, which enables the set-up of a DLT/Blockchain network on either platform to be consistent.

No dependency on managed K8s services

Setting up a DLT network does not depend on a managed K8s services, which means non-managed K8s clusters can be used to make a DLT network set-up happen.

One touch/command deployment

A single Ansible playbook called site.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration] can spin up an entire DLT network and a substantial amount of time can be reduced which is involved in configuring and managing the network components of a Corda or Fabric DLT network.

Security through Vault

HashiCorp Vault is used to provide identity-based security. When it comes to managing secrets with machines in a multi-cloud environment, the dynamic nature of HashiCorp Vault becomes very useful. Vault enables Hyperledger Bevel to securely store and tightly control access to tokens, passwords, certificates, and encryption keys for protecting machines, applications, and sensitive data.

Sharing a Network.yaml file without disclosing any confidentiality

Hyperledger Bevel allows an organization to use a configured network.yaml file to set up an initial DLT/Blockchain network and a first node in the network, and allows this file to be shared by new organizations that will have to join this DLT/Blockchain network to reuse this network.yaml file, but without revealing any confidential data of the first organization.

 Getting Started

Getting Started

Install and Configure Prerequisites

Follow instructions to install and configure common prerequisites first. Once you have the prerequisites installed and configured, you are ready to fork the GitHub repository and start using Hyperledger Bevel.

There are two ways in which you can start using Hyperledger Bevel for your DLT deployment.

	Using the bevel-build Docker container as Ansible controller.

	Using your own machine as Ansible controller.

Using Docker container

Follow these instructions for how to use docker container as Ansible controller.

Using Own machine

NOTE All the instructions are for an Ubuntu machine, but configurations can be changed for other machines. Although it is best to use the Docker container if you do not have an Ubuntu machine.

Install additional Prerequisites

Install additional prerequisites.

Update Configuration File

Once all the prerequisites have been configured, it is time to update Hyperledger Bevel configuration file. Depending on your platform of choice, there can be some differences in the configuration file. Please follow platform specific links below to learn more on updating the configuration file.

	R3 Corda Configuration File

	Hyperledger Fabric Configuration File

	Hyperledger Indy Configuration File

	Quorum Configuration File

	Hyperledger Besu Configuration File

Deploy the Network

After the configuration file is updated and saved on the Ansible Controller, run the provisioning script to deploy the network using the following command.

go to bevel
cd bevel
Run the provisioning scripts
ansible-playbook platforms/shared/configuration/site.yaml -e "@/path/to/network.yaml"

For more detailed instructions to set up a network, read Setting up a DLT/Blockchain network.

 Operations Guide

Operations Guide

This section defines the pre-requisites installation and steps for setup of a DLT network. If this is your first time, do refer to Key-Concepts, Getting-Started and Architecture-References before moving ahead.

Pre-requisites

	Install Common Pre-requisites

	Additional Prerequisites for own Ansible Controller

	Configure Common Pre-requisites

Fabric operations

	Configuration file specification: Hyperledger-Fabric

	Upgrading Hyperledger Fabric version

	Adding a new organization in Hyperledger Fabric

	Adding a new Orderer organization in Hyperledger Fabric

	Adding a new channel in Hyperledger Fabric

	Removing an organization in Hyperledger Fabric

	Adding a new peer to existing organization in Hyperledger Fabric

	Adding a new RAFT orderer to existing Orderer organization in Hyperledger Fabric

	Installing and instantiating chaincode in Bevel deployed Hyperledger Fabric Network

	Upgrading chaincode in Hyperledger Fabric

	Deploying Fabric Operations Console

Corda operations

	Configuration file specification: R3 Corda

	Adding cordapps to R3 Corda network

	Adding a new organization in R3 Corda

	Adding a new Notary organization in R3 Corda Enterprise

Besu operations

	Configuration file specification: Hyperledger Besu

	Adding a new member organization in Besu

	Adding a new validator node in Besu

	Adding a new validator organization in Besu

Indy operations

	Configuration file specification: Indy

	Adding a new validator organization in Indy

Quorum operations

	Configuration file specification: Quorum

	Adding a new node in Quorum

Generic operations

	Setting up a DLT/Blockchain network

	How to debug a Bevel deployment

	Adding a new storageclass

	Upgrading a running helm2 Bevel deployment to helm3

 Install Common Pre-requisites

Install Common Pre-requisites

Following are the common pre-requiste software/client/platforms etc. needed before you can start deploying/operating blockchain networks using Hyperledger Bevel.

Git Repository

GitOps is a key concept for Hyperledger Bevel, so a Git repository is needed for Bevel (this can be a GitHub [https://github.com/] repository as well).
Fork or import the Bevel GitHub repo [https://github.com/hyperledger/bevel] to this Git repository.

The Operator should have a user created on this repo with read-write access to the Git Repository.

NOTE: Install Git Client Version > 2.31.0

Kubernetes

Hyperledger Bevel deploys the DLT/Blockchain network on Kubernetes [https://kubernetes.io/] clusters; hence, at least one Kubernetes cluster should be available.
Bevel recommends one Kubernetes cluster per organization for production-ready projects.
Also, a user needs to make sure that the Kubernetes clusters can support the number of pods and persistent volumes that will be created by Bevel.

NOTE: For the current release Bevel has been tested on Amazon EKS with Kubernetes version 1.19.

Bevel has been tested on Kubernetes >= 1.14 and <= 1.19

Also, install kubectl Client version v1.19.8

Please follow Amazon instructions [https://aws.amazon.com/eks/getting-started/] to set-up your required Kubernetes cluster(s).
To connect to Kubernetes cluster(s), you will also need kubectl Command Line Interface (CLI). Refer here [https://kubernetes.io/docs/tasks/tools/install-kubectl/] for installation instructions, although Hyperledger Bevel configuration code (Ansible scripts) installs this automatically.

HashiCorp Vault

In this current release, Hashicorp Vault [https://www.vaultproject.io/] is mandatory for Hyperledger Bevel as the certificate and key storage solution; hence, at least one Vault server should be available. Bevel recommends one Vault per organization for production-ready projects.

Follow official instructions [https://www.vaultproject.io/docs/install/] to deploy Vault in your environment.

NOTE: Recommended approach is to create one Vault deployment on one VM and configure the backend as a cloud storage.

Vault version should be 1.7.1

Internet Domain

Hyperledger Bevel uses Ambassador [https://www.getambassador.io/about/why-ambassador/] or HAProxy Ingress Controller [https://www.haproxy.com/documentation/hapee/1-9r1/traffic-management/kubernetes-ingress-controller/] for inter-cluster communication. So, for the Kubernetes services to be available outside the specific cluster, at least one DNS Domain is required. This domain name can then be sub-divided across multiple clusters and the domain-resolution configured for each.
Although for production implementations, each organization (and thereby each cluster), must have one domain name.

NOTE: If single cluster is being used for all organizations in a dev/POC environment, then domain name is not needed.

Docker

Hyperledger Bevel provides pre-built docker images which are available on GitHub Repo [https://github.com/orgs/hyperledger/packages?repo_name=bevel]. If specific changes are needed in the Docker images, then you can build them locally using the Dockerfiles provided. A user needs to install Docker CLI [https://docs.docker.com/install/] to make sure the environment has the capability of building these Dockerfiles to generate various docker images. Platform specific docker image details are mentioned here.

NOTE: Hyperledger Bevel uses minimum Docker version 18.03.0

You can check the version of Docker you have installed with the following
command from a terminal prompt:

 docker --version

For storing private docker images, a private docker registry can be used. Information such as registry url, username, password, etc. can be configured in the configuration file like Fabric configuration file.

 Additional Prerequisites for own Ansible Controller

Additional Prerequisites for own Ansible Controller

NOTE: These are not needed when using bevel-build as these comes pre-packaged.

Ansible

Hyperledger Bevel configuration is essentially Ansible scripts, so install Ansible on the machine from which you will deploy the DLT/Blockchain network. This can be a local machine as long as Ansible commands can run on it.

Please note that this machine (also called Ansible Controller) should have connectivity to the Kubernetes cluster(s) and the Hashicorp Vault service(s). And it is essential to install the git client [https://git-scm.com/download] on the Ansible Controller.

NOTE: Minimum Ansible version should be 2.10.5 with Python3

Also, Ansible’s k8s module requires the openshift python package (>= 0.12.0) and some collections and jq.

pip3 install openshift==0.12.0
ansible-galaxy install -r platforms/shared/configuration/requirements.yaml
apt-get install -y jq #Run equivalent for Mac or Linux

NOTE (MacOS): Ansible requires GNU tar. Install it on MacOS through Homebrew brew install gnu-tar

Configuring Ansible Inventory file

In Hyperledger Bevel, we connect to Kubernetes cluster through the Ansible Controller and do not modify or connect to any other machine directly. Hyperledger Bevel’s sample inventory file is located here [https://github.com/hyperledger/bevel/tree/main/platforms/shared/inventory/ansible_provisioners].

Add the contents of this file in your Ansible host configuration file (typically in file /etc/ansible/hosts).

Read more about Ansible inventory here [https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html].

NPM

Hyperledger Bevel provides the feature of automated validation of the configuration file (network.yaml), this is done using ajv (JSON schema validator) cli. The deployment scripts install ajv using npm module which requires npm as prerequisite.

You can install the latest NPM version from offical site [https://docs.npmjs.com/downloading-and-installing-node-js-and-npm].

 Configure Common Pre-requisites

Configure Common Pre-requisites

	GitOps Authentication

	Vault Initialization and unseal

	Docker Images

	DNS Update

	External DNS

[bookmark: gitops-authentication]

GitOps Authentication

For synchronizing the Git repo with the cluster, Hyperledger Bevel configures Flux for each cluster. The authentication is via SSH or HTTPS which can be specified in the configuration file gitops.protocol section.

For HTTPS, just generate a git token and give that read-write access. Keep the token safe and use in the gitops.password section of the configuration file.

For SSH, run the following command to generate a private-public key pair named gitops.

ssh-keygen -q -N "" -f ./gitops

The above command generates an SSH key-pair: gitops (private key) and gitops.pub (public key).

Use the path to the private key (gitops) in the gitops.private_key section of the configuration file.

NOTE: Ensure that the Ansible host has read-access to the private key file (gitops).

And add the public key contents (starts with ssh-rsa) as an Access Key (with read-write permissions) in your Github repository by following this guide [https://help.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account].

[bookmark: vaultunseal]

Unseal Hashicorp Vault

The Hashicorp Vault [https://www.vaultproject.io/] service should be accessible by the ansible controller as well as the kubernetes cluster (proper inbound/outbound rules should be configured). If not initialised and unsealed already, complete the following steps to unseal and access the Vault.

	Install Vault client. Follow the instructions on Install Vault [https://www.vaultproject.io/docs/install/].

	Set the environment Variable VAULT_ADDR as the Vault service.

export VAULT_ADDR=http://my-vault-server:9000

NOTE The port should be accessible from the host where you are running this command from, as well as the Ansible controller and the Kubernetes nodes.

	Now execute the following:

vault operator init -key-shares=1 -key-threshold=1

It will give following output:

Unseal Key 1: << unseal key>>

Initial Root Token: << root token>>

Save the root token and unseal key in a secure location. This root token is to be updated in Hyperledger Bevel’s network.yaml file before running the Ansible playbook(s) to deploy the DLT/Blockchain network.

	Unseal with the following command:

vault operator unseal << unseal-key-from-above >>

	Run this command to check if Vault is unsealed:

vault status

NOTE: It is recommended to use Vault auto-unseal using Cloud KMS for Production Systems. And also, rotate the root token regularly.

[bookmark: docker]

Docker Images

Hyperledger Bevel provides pre-built docker images which are available on GitHub Repo [https://github.com/orgs/hyperledger/packages?repo_name=bevel]. Ensure that the versions/tags you need are available. If not, raise it on our Discord Channel [https://discord.com/channels/905194001349627914/941475087389950002].

For Corda Enterprise, the docker images should be built and put in a private docker registry. Please follow these instructions to build docker images for Corda Enterprise.

NOTE: Hyperledger Bevel recommends use of private docker registry for production use. The username/password for the docker registry can be provided in a network.yaml file so that the Kubernetes cluster can access the registry.

[bookmark: dns-update]

DNS Update

Hyperledger Bevel uses Ambassador [https://www.getambassador.io/about/why-ambassador/] or HAProxy Ingress Controller [https://www.haproxy.com/documentation/hapee/1-9r1/traffic-management/kubernetes-ingress-controller/] (for Fabric) for inter-cluster communication.
Bevel automation deploys both as per the configuration provided in network.env.proxy section of the Bevel configuration file, but if you are not using External DNS, you will have to manually add DNS entries.

	After Ambassador/HAProxy is deployed on the cluster (manually or using platforms/shared/configuration/kubernetes-env-setup.yaml playbook), get the external IP address of the Ambassador/HAProxy service.

kubectl get services -o wide

The output of the above command will look like this:
[image: ../_images/ambassador-service.png]Ambassador Service Output

	Copy the EXTERNAL-IP for ambassador service from the output.

NOTE: If Ambassador is configured by the playbook, then this configuration has to be done while the playbook is being executed, otherwise the deployment will fail.

	Configure your subdomain configuration to redirect the external DNS name to this external IP. For example, if you want to configure the external domain suffix as test.corda.blockchaincloudpoc.com, then update the DNS mapping to redirect all requests to *.test.corda.blockchaincloudpoc.com towards EXTERNAL-IP from above as an ALIAS.
In AWS Route53, the settings look like below (in Hosted Zones).
[image: ../_images/ambassador-dns.png]Ambassador DNS Configuration

NOTE: Ambassador for AWS and AWS-baremetal expose Hyperledger Indy nodes via a TCP Network Load Balancer with a fixed IP address. The fixed IP address is used as EIP allocation ID for all steward public IPs found in the network.yaml. The same public IP is specified for all stewards within one organization. All ports used by Indy nodes in the particular organization have to be exposed.

[bookmark: externaldns]

External DNS

In case you do not want to manually update the route configurations every time you change DNS name, you can use External DNS [https://github.com/kubernetes-sigs/external-dns] for automatic updation of DNS routes.
Follow the steps as per your cloud provider, and then use external_dns: enabled in the env section of the Bevel configuration file (network.yaml).

NOTE: Detailed configuration for External DNS setup is not provided here, please refer the link above.

 Configuration file specification: Hyperledger-Fabric

Configuration file specification: Hyperledger-Fabric

A network.yaml file is the base configuration file designed in Hyperledger Bevel for setting up a Fabric DLT network. This file contains all the information related to the infrastructure and network specifications. Below shows its structure.
[image: ../_images/TopLevelClass-Fabric.png]

Before setting up a Fabric DLT/Blockchain network, this file needs to be updated with the required specifications.

A sample configuration file is provided in the repo path:platforms/hyperledger-fabric/configuration/samples/network-fabricv2.yaml

A json-schema definition is provided in platforms/network-schema.json to assist with semantic validations and lints. You can use your favorite yaml lint plugin compatible with json-schema specification, like redhat.vscode-yaml for VSCode. You need to adjust the directive in template located in the first line based on your actual build directory:

yaml-language-server: $schema=../platforms/network-schema.json

The configurations are grouped in the following sections for better understanding.

	type

	version

	docker

	frontend

	env

	orderers

	channels

	organizations

Here is the snapshot from the sample configuration file

[image: ../_images/NetworkYamlFabric1.png]

The sections in the sample configuration file are:

type defines the platform choice like corda/fabric, here in the example its Fabric

version defines the version of platform being used. The current Fabric version support is 1.4.8, 2.2.0 & 2.2.2

frontend is a flag which defines if frontend is enabled for nodes or not. Its value can only be enabled/disabled. This is only applicable if the sample Supplychain App is being installed.

env section contains the environment type and additional (other than 8443) Ambassador port configuration. Vaule for proxy field under this section can be ‘ambassador’ or ‘haproxy’

The snapshot of the env section with example value is below

 env:
 type: "env_type" # tag for the environment. Important to run multiple flux on single cluster
 proxy: haproxy # values can be 'haproxy' or 'none' (for minikube)
 ambassadorPorts: # Any additional Ambassador ports can be given here, this is valid only if proxy='ambassador'
 portRange: # For a range of ports
 from: 15010
 to: 15043
 # ports: 15020,15021 # For specific ports
 loadBalancerSourceRanges: # (Optional) Default value is '0.0.0.0/0', this value can be changed to any other IP adres or list (comma-separated without spaces) of IP adresses, this is valid only if proxy='ambassador'
 retry_count: 100 # Retry count for the checks
 external_dns: enabled # Should be enabled if using external-dns for automatic route configuration

The fields under env section are

	Field
	Description

	type
	Environment type. Can be like dev/test/prod.

	proxy
	Choice of the Cluster Ingress controller. Currently supports 'haproxy' only as 'ambassador' has not been implemented for Fabric

	ambassadorPorts
	Any additional Ambassador ports can be given here. This is only valid if proxy: ambassador

	loadBalancerSourceRanges
	(Optional) Restrict inbound access to a single or list of IP adresses for the public Ambassador ports to enhance Bevel network security. This is only valid if proxy: ambassador.

	retry_count
	Retry count for the checks.

	external_dns
	If the cluster has the external DNS service, this has to be set enabled so that the hosted zone is automatically updated.

docker section contains the credentials of the repository where all the required images are built and stored.

The snapshot of the docker section with example values is below

 # Docker registry details where images are stored. This will be used to create k8s secrets
 # Please ensure all required images are built and stored in this registry.
 # Do not check-in docker_password.
 docker:
 url: "docker_url"
 username: "docker_username"
 password: "docker_password"

The fields under docker section are

	Field
	Description

	url
	Docker registry url

	username
	Username credential required for login

	password
	Password credential required for login

NOTE: Please follow these instructions to build and store the docker images before running the Ansible playbooks.

orderers section contains a list of orderers with variables which will expose it for the network.

The snapshot of the orderers section with example values is below

 # Remote connection information for orderer (will be blank or removed for orderer hosting organization)
 orderers:
 - orderer:
 type: orderer
 name: orderer1
 org_name: supplychain #org_name should match one organization definition below in organizations: key
 uri: orderer1.org1ambassador.blockchaincloudpoc.com:8443 # Can be external or internal URI for orderer which should be reachable by all peers
 certificate: /home/bevel/build/orderer1.crt # Ensure that the directory exists
 - orderer:
 type: orderer
 name: orderer2
 org_name: supplychain #org_name should match one organization definition below in organizations: key
 uri: orderer2.org1ambassador.blockchaincloudpoc.com:8443 # Can be external or internal URI for orderer which should be reachable by all peers
 certificate: /home/bevel/build/orderer2.crt # Ensure that the directory exists

The fields under the each orderer are

	Field
	Description

	name
	Name of the orderer service

	type
	For Fabric, orderer is the only valid type of orderers.

	org_name
	Name of the organization to which this orderer belongs to

	uri
	Orderer URL

	certificate
	Path to orderer certificate. For inital network setup, ensure that the directory is present, the file need not be present. For adding a new organization, ensure that the file is the crt file of the orderer of the existing network.

The channels sections contains the list of channels mentioning the participating peers of the organizations.

The snapshot of channels section with its fields and sample values is below

 # The channels defined for a network with participating peers in each channel
 channels:
 - channel:
 consortium: SupplyChainConsortium
 channel_name: AllChannel
 orderer:
 name: supplychain
 participants:
 - organization:
 name: carrier
 type: creator # creator organization will create the channel and instantiate chaincode, in addition to joining the channel and install chaincode
 org_status: new
 peers:
 - peer:
 name: peer0
 gossipAddress: peer0.carrier-net.org3ambassador.blockchaincloudpoc.com:8443 # External or internal URI of the gossip peer
 peerAddress: peer0.carrier-net.org3ambassador.blockchaincloudpoc.com:8443 # External URI of the peer
 ordererAddress: orderer1.org1ambassador.blockchaincloudpoc.com:8443 # External or internal URI of the orderer
 - organization:
 name: store
 type: joiner # joiner organization will only join the channel and install chaincode
 org_status: new
 peers:
 - peer:
 name: peer0
 gossipAddress: peer0.store-net.org3ambassador.blockchaincloudpoc.com:8443
 peerAddress: peer0.store-net.org3ambassador.blockchaincloudpoc.com:8443 # External URI of the peer
 ordererAddress: orderer1.org1ambassador.blockchaincloudpoc.com:8443
 - organization:
 name: warehouse
 type: joiner
 org_status: new
 peers:
 - peer:
 name: peer0
 gossipAddress: peer0.warehouse-net.org2ambassador.blockchaincloudpoc.com:8443
 peerAddress: peer0.warehouse-net.org3ambassador.blockchaincloudpoc.com:8443 # External URI of the peer
 ordererAddress: orderer1.org1ambassador.blockchaincloudpoc.com:8443
 - organization:
 name: manufacturer
 type: joiner
 org_status: new
 peers:
 - peer:
 name: peer0
 gossipAddress: peer0.manufacturer-net.org2ambassador.blockchaincloudpoc.com:8443
 peerAddress: peer0.manufacturer-net.org3ambassador.blockchaincloudpoc.com:8443 # External URI of the peer
 ordererAddress: orderer1.org1ambassador.blockchaincloudpoc.com:8443
 endorsers:
 name:
 - carrier
 - warehouse
 - manufacturer
 - store
 corepeerAddress:
 - peer0.carrier-net.hf.demo.aws.blockchaincloudpoc.com:8443
 - peer0.warehouse-net.hf.demo.aws.blockchaincloudpoc.com:8443
 - peer0.manufacturer-net.hf.demo.aws.blockchaincloudpoc.com:8443
 - peer0.store-net.hf.demo.aws.blockchaincloudpoc.com:8443
 genesis:
 name: OrdererGenesis

The fields under the channel are

	Field
	Description

	consortium
	Name of the consortium, the channel belongs to

	channel_name
	Name of the channel

	genesis.name
	Name of the genesis block

	orderer.name
	Organization name to which the orderer belongs

	participants
	Contains list of organizations participating in the channel

	endorsers.name
	Contains list of endorsers names (v2.2+)

	endorsers.corepeerAddress
	Contains list of endorsers addresses (v2.2+)

	channel_status
	(only needed to add channel to existing org. Possible values are new or existing

Each organization field under participants field of the channel contains the following fields

	Field
	Description

	name
	Organization name of the peer participating in the channel

	type
	This field can be creator/joiner of channel

	org_status
	new (for inital setup) or existing (for add new org)

	ordererAddress
	URL of the orderer this peer connects to

	peer.name
	Name of the peer

	peer.gossipAddress
	Gossip address of the peer

	peer.peerAddress
	External address of the peer

The organizations section contains the specifications of each organization.

In the sample configuration example, we have five organization under the organizations section

The snapshot of an organization field with sample values is below

 organizations:
 # Specification for the 1st organization. Each organization maps to a VPC and a separate k8s cluster
 - organization:
 name: supplychain
 country: UK
 state: London
 location: London
 subject: "O=Orderer,L=51.50/-0.13/London,C=GB"
 type: orderer
 external_url_suffix: org1ambassador.blockchaincloudpoc.com
 org_status: new
 ca_data:
 url: ca.supplychain-net:7054
 certificate: file/server.crt # This has not been implemented
 cloud_provider: aws # Options: aws, azure, gcp, digitalocean, minikube

Each organization under the organizations section has the following fields.

	Field
	Description

	name
	Name of the organization

	country
	Country of the organization

	state
	State of the organization

	location
	Location of the organization

	subject
	Subject format can be referred at OpenSSL Subject

	type
	This field can be orderer/peer

	external_url_suffix
	Public url suffix of the cluster.

	org_status
	new (for inital setup) or existing (for add new org)

	ca_data
	Contains the certificate authority url and certificate path; this has not been implemented yet

	cloud_provider
	Cloud provider of the Kubernetes cluster for this organization. This field can be aws, azure, gcp or minikube

	aws
	When the organization cluster is on AWS

	k8s
	Kubernetes cluster deployment variables.

	vault
	Contains Hashicorp Vault server address and root-token in the example

	gitops
	Git Repo details which will be used by GitOps/Flux.

	services
	Contains list of services which could ca/peer/orderers/concensus based on the type of organization

For the aws and k8s field the snapshot with sample values is below

 aws:
 access_key: "<aws_access_key>" # AWS Access key, only used when cloud_provider=aws
 secret_key: "<aws_secret>" # AWS Secret key, only used when cloud_provider=aws

 # Kubernetes cluster deployment variables.
 k8s:
 region: "<k8s_region>"
 context: "<cluster_context>"
 config_file: "<path_to_k8s_config_file>"

The aws field under each organization contains: (This will be ignored if cloud_provider is not ‘aws’)

	Field
	Description

	access_key
	AWS Access key

	secret_key
	AWS Secret key

The k8s field under each organization contains

	Field
	Description

	region
	Region where the Kubernetes cluster is deployed, e.g : eu-west-1

	context
	Context/Name of the cluster where the organization entities should be deployed

	config_file
	Path to the kubernetes cluster configuration file

For gitops fields the snapshot from the sample configuration file with the example values is below

 # Git Repo details which will be used by GitOps/Flux.
 gitops:
 git_protocol: "https" # Option for git over https or ssh
 git_url: "https://github.com/<username>/bevel.git" # Gitops htpps or ssh url for flux value files
 branch: "<branch_name>" # Git branch where release is being made
 release_dir: "platforms/hyperledger-fabric/releases/dev" # Relative Path in the Git repo for flux sync per environment.
 chart_source: "platforms/hyperledger-fabric/charts" # Relative Path where the Helm charts are stored in Git repo
 git_repo: "github.com/<username>/bevel.git" # without https://
 username: "<username>" # Git Service user who has rights to check-in in all branches
 password: "<password>" # Git Server user password/personal token (Optional for ssh; Required for https)
 email: "<git_email>" # Email to use in git config
 private_key: "<path to gitops private key>" # Path to private key (Optional for https; Required for ssh)

The gitops field under each organization contains

	Field
	Description

	git_protocol
	Option for git over https or ssh. Can be https or ssh

	git_url
	SSH or HTTPs url of the repository where flux should be synced

	branch
	Branch of the repository where the Helm Charts and value files are stored

	release_dir
	Relative path where flux should sync files

	chart_source
	Relative path where the helm charts are stored

	git_repo
	Gitops git repo URL https URL for git push like "github.com/hyperledger/bevel.git"

	username
	Username which has access rights to read/write on repository

	password
	Password of the user which has access rights to read/write on repository (Optional for ssh; Required for https)

	email
	Email of the user to be used in git config

	private_key
	Path to the private key file which has write-access to the git repo (Optional for https; Required for ssh)

The services field for each organization under organizations section of Fabric contains list of services which could be ca/orderers/consensus/peers based on if the type of organization.

Each organization will have a CA service under the service field. The snapshot of CA service with example values is below

 # Services maps to the pods that will be deployed on the k8s cluster
 # This sample is an orderer service and includes a zk-kafka consensus
 services:
 ca:
 name: ca
 subject: "/C=GB/ST=London/L=London/O=Orderer/CN=ca.supplychain-net"
 type: ca
 grpc:
 port: 7054

The fields under ca service are

	Field
	Description

	name
	Certificate Authority service name

	subject
	Subject format can be referred at OpenSSL Subject

	type
	Type must be ca for certification authority

	grpc.port
	Grpc port number

Each organization with type as peer will have a peers service. The snapshot of peers service with example values is below

 peers:
 - peer:
 name: peer0
 type: anchor # This can be anchor/nonanchor. Atleast one peer should be anchor peer.
 gossippeeraddress: peer0.manufacturer-net:7051 # Internal Address of the other peer in same Org for gossip, same peer if there is only one peer
 peerAddress: peer0.carrier-net.org3ambassador.blockchaincloudpoc.com:8443 # External URI of the peer
 certificate: "/path/ca.crt" # certificate path for peer
 cli: disabled # Creates a peer cli pod depending upon the (enabled/disabled) tag.
 grpc:
 port: 7051
 events:
 port: 7053
 couchdb:
 port: 5984
 restserver: # This is for the rest-api server
 targetPort: 20001
 port: 20001
 expressapi: # This is for the express api server
 targetPort: 3000
 port: 3000
 chaincode:
 name: "chaincode_name" #This has to be replaced with the name of the chaincode
 version: "chaincode_version" #This has to be replaced with the version of the chaincode
 maindirectory: "chaincode_main" #The main directory where chaincode is needed to be placed
 repository:
 username: "git_username" # Git Service user who has rights to check-in in all branches
 password: "git_password"
 url: "github.com/hyperledger/bevel.git"
 branch: develop
 path: "chaincode_src" #The path to the chaincode
 arguments: 'chaincode_args' #Arguments to be passed along with the chaincode parameters
 endorsements: "" #Endorsements (if any) provided along with the chaincode

The fields under peer service are

	Field
	Description

	name
	Name of the peer. Must be of the format peer0 for the first peer, peer1 for the second peer and so on.

	type
	Type can be anchor and nonanchor for Peer

	gossippeeraddress
	Gossip address of another peer in the same Organization. If there is only one peer, then use that peer address. Must be internal as the peer is hosted in the same Kubernetes cluster.

	peerAddress
	External address of this peer. Must be the HAProxy qualified address. If using minikube, this can be internal address.

	certificate
	Certificate path for peer.

	cli
	Optional field. If enabled will deploy the CLI pod for this Peer. Default is disabled.

	grpc.port
	Grpc port

	events.port
	Events port

	couchdb.port
	Couchdb port

	restserver.targetPort
	Restserver target port

	restserver.port
	Restserver port

	expressapi.targetPort
	Express server target port

	expressapi.port
	Express server port

	chaincode.name
	Name of the chaincode

	chaincode.version
	Version of the chaincode. Please do not use . (dot) in the version.

	chaincode.maindirectory
	Path of main.go file

	chaincode.lang
	The language in which the chaincode is written (golang/ java)

	chaincode.repository.username
	Username which has access to the git repo containing chaincode

	chaincode.repository.password
	Password of the user which has access to the git repo containing chaincode

	services.peer.chaincode.repository.url
	URL of the git repository containing the chaincode

	chaincode.repository.branch
	Branch in the repository where the chaincode resides

	chaincode.repository.path
	Path of the chaincode in the repository branch

	chaincode.arguments
	Arguments to the chaincode

	chaincode.endorsements
	Endorsements (if any) provided along with the chaincode

The organization with orderer type will have concensus service. The snapshot of consensus service with example values is below

 consensus:
 name: kafka
 type: broker
 replicas: 4
 grpc:
 port: 9092

The fields under consensus service are

	Field
	Description

	name
	Name of the Consensus service. Can be raft or kafka.

	type
	Only for kafka. Consensus service type, only value supported is broker currently

	replicas
	Only for kafka. Replica count of the brokers

	grpc.port
	Only for kafka. Grpc port of consensus service

The organization with orderer type will have orderers service. The snapshot of orderers service with example values is below

 orderers:
 # This sample has multiple orderers as an example.
 # You can use a single orderer for most production implementations.
 - orderer:
 name: orderer1
 type: orderer
 consensus: kafka
 grpc:
 port: 7050
 - orderer:
 name: orderer2
 type: orderer
 consensus: kafka
 grpc:
 port: 7050

The fields under orderer service are

	Field
	Description

	name
	Name of the Orderer service

	type
	This type must be orderer

	consensus
	Consensus type, for example: kafka, raft

	status
	(Only needed to add new orderer). Possible values are new or existing

	grpc.port
	Grpc port of orderer

\
** feature is in future scope

 Upgrading Hyperledger Fabric version

 [bookmark: upgrading-fabric]

Upgrading Hyperledger Fabric version

	Pre-requisites

	Modifying image versions

[bookmark: pre_req]

Pre-requisites

Hyperledger Fabric image versions, which are compatible with the target fabric version need to be known.

For example, for Fabric v1.4.8, these are the image tags of the supporting docker images

	Fabric component
	Fabric image tag

	kafka
	0.4.18

	zookeeper
	0.4.18

	couchDB
	0.4.18

	orderer
	1.4.8

	peer
	1.4.8

	ca
	1.4.4

NOTE: This change only upgrades the docker images, any other configuration changes is not covered by this guide. Please refer to Fabric documentation for any specific configuration changes.

[bookmark: modify_image_version]

Modifying image versions

The network.yaml here [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/samples/network-fabricv2.yaml] should be updated with the required version tag under network.version for upgrading the base images of CA, orderer and peer.
For example:

network:
 version: 1.4.8

2 files need to be edited in order to support version change for kafka, zookeeper and couchDB

	File
	Fabric entity
	Key

	orderer vars
	kafka
	kafka_image_version

	orderer vars
	zookeeper
	zookeeper_image_version

	peer vars
	couchDB
	couchdb_image_version

Executing Ansible playbook

The playbook site.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/site.yaml] (ReadMe [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/]) can be run after the configuration file (for example: network.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/samples/network-fabricv2.yaml] for Fabric) has been updated.

ansible-playbook platforms/shared/configuration/site.yaml --extra-vars "@path-to-network.yaml"

 Adding a new organization in Hyperledger Fabric

 [bookmark: adding-new-org-to-existing-network-in-fabric]

Adding a new organization in Hyperledger Fabric

	Prerequisites

	Modifying configuration file

	Running playbook to deploy Hyperledger Fabric network

[bookmark: prerequisites]

Prerequisites

To add a new organization a fully configured Fabric network must be present already, i.e. a Fabric network which has Orderers, Peers, Channels (with all Peers already in the channels). The corresponding crypto materials should also be present in their respective Hashicorp Vault.

NOTE: Addition of a new organization has been tested on an existing network which is created by Bevel. Networks created using other methods may be suitable but this has not been tested by Bevel team.

[bookmark: create_config_file]

Modifying Configuration File

Refer this guide for details on editing the configuration file.

While modifying the configuration file(network.yaml) for adding new organization, all the existing organizations should have org_status tag as existing and the new organization should have org_status tag as new under network.channels e.g.

network:
 channels:
 - channel:
 ..
 ..
 participants:
 - organization:
 ..
 ..
 org_status: new # new for new organization(s)
 - organization:
 ..
 ..
 org_status: existing # existing for old organization(s)

and under network.organizations as

network:
 organizations:
 - organization:
 ..
 ..
 org_status: new # new for new organization(s)
 - organization:
 ..
 ..
 org_status: existing # existing for old organization(s)

The network.yaml file should contain the specific network.organization details along with the orderer information.

For reference, see network-fabric-add-organization.yaml file here [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/samples].

[bookmark: run_network]

Run playbook

The add-new-organization.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/add-new-organization.yaml] playbook is used to add a new organization to the existing network. This can be done using the following command

ansible-playbook platforms/shared/configuration/add-new-organization.yaml --extra-vars "@path-to-network.yaml"

NOTE: Make sure that the org_status label was set as new when the network is deployed for the first time. If you have additional applications, please deploy them as well.

 Adding a new Orderer organization in Hyperledger Fabric

 [bookmark: adding-new-orderer-to-existing-network-in-fabric]

Adding a new Orderer organization in Hyperledger Fabric

	Prerequisites

	Modifying configuration file

	Running playbook to deploy Hyperledger Fabric network

[bookmark: prerequisites]

Prerequisites

To add a new Orderer organization, a fully configured Fabric network must be present already setup, i.e. a Fabric network which has Orderers, Peers, Channels (with all Peers already in the channels). The corresponding crypto materials should also be present in their respective Hashicorp Vault.

NOTE: Addition of a new Orderer organization has been tested on an existing network which is created by Bevel. Networks created using other methods may be suitable but this has not been tested by Bevel team.
Addition of new Orderer organization only works with Fabric 2.2.2 and RAFT Service.

[bookmark: create_config_file]

Modifying Configuration File

Refer this guide for details on editing the configuration file.

While modifying the configuration file(network.yaml) for adding new orderer organization, all the existing organizations should have org_status tag as existing and the new organization should have org_status tag as new under network.channels e.g.

network:
 channels:
 - channel:
 ..
 ..
 participants:
 - organization:
 ..
 ..
 org_status: new # new for new organization(s)
 - organization:
 ..
 ..
 org_status: existing # existing for old organization(s)

and under network.organizations as

network:
 organizations:
 - organization:
 ..
 ..
 org_status: new # new for new organization(s)
 - organization:
 ..
 ..
 org_status: existing # existing for old organization(s)

The network.yaml file should contain the specific network.organization details along with the orderer information.

For reference, see network-fabric-add-ordererorg.yaml file here [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/add-orderer-organization.yaml].

[bookmark: run_network]

Run playbook

The add-orderer-organization.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/add-orderer-organization.yaml] playbook is used to add a new Orderer organization to the existing network. This can be done using the following command

ansible-playbook platforms/hyperledger-fabric/configuration/add-orderer-organization.yaml --extra-vars "@path-to-network.yaml"

NOTE: Make sure that the org_status label was set as new when the network is deployed for the first time. If you have additional applications, please deploy them as well.

 Adding a new channel in Hyperledger Fabric

 [bookmark: adding-new-channel-to-existing-network-in-fabric]

Adding a new channel in Hyperledger Fabric

	Prerequisites

	Modifying configuration file

	Running playbook to deploy Hyperledger Fabric network

[bookmark: prerequisites]

Prerequisites

To add a new channel a fully configured Fabric network must be present already, i.e. a Fabric network which has Orderers, Peers, Channels (with all Peers already in the channels). The corresponding crypto materials should also be present in their respective Hashicorp Vault.

NOTE: Do not try to add a new organization as a part of this operation. Use only existing organization for new channel addition.

[bookmark: create_config_file]

Modifying Configuration File

Refer this guide for details on editing the configuration file.

While modifying the configuration file(network.yaml) for adding new channel, all the existing channel should have channel_status tag as existing and the new channel should have channel_status tag as new under network.channels e.g.

network:
 channels:
 - channel:
 channel_status: existing
 ..
 ..
 participants:
 - organization:
 ..
 ..
 - organization:
 ..
 ..
 - channel:
 channel_status: new
 ..
 ..
 participants:
 - organization:
 ..
 ..
 - organization:
 ..
 ..

The network.yaml file should contain the specific network.organization details along with the orderer information.

For reference, see network-fabric-add-channel.yaml file here [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/samples].

[bookmark: run_network]

Run playbook

The add-new-channel.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/add-new-channel.yaml] playbook is used to add a new channel to the existing network. This can be done using the following command

ansible-playbook platforms/hyperledger-fabric/configuration/add-new-channel.yaml --extra-vars "@path-to-network.yaml"

NOTE: Make sure that the channel_status label was set as new when the network is deployed for the first time. If you have additional applications, please deploy them as well.

 Removing an organization in Hyperledger Fabric

 [bookmark: removing-org-from-existing-network-in-fabric]

Removing an organization in Hyperledger Fabric

	Prerequisites

	Modifying configuration file

	Running playbook to deploy Hyperledger Fabric network

[bookmark: prerequisites]

Prerequisites

To remove an organization a fully configured Fabric network must be present already, i.e. a Fabric network which has Orderers, Peers, Channels (with all Peers already in the channels). The corresponding crypto materials should also be present in their respective Hashicorp Vault.

NOTE: Removing an organization has been tested on an existing network which is created by Bevel. Networks created using other methods may be suitable but this has not been tested by Bevel team.

[bookmark: create_config_file]

Modifying Configuration File

Refer this guide for details on editing the configuration file.

While modifying the configuration file(network.yaml) for removing an organization, all the existing organizations should have org_status tag as existing and to be deleted organization should have org_status tag as delete under network.channels e.g.

network:
 channels:
 - channel:
 ..
 ..
 participants:
 - organization:
 ..
 ..
 org_status: delete # delete for to be deleted organization(s)
 - organization:
 ..
 ..
 org_status: existing # existing for old organization(s)

and under network.organizations as

network:
 organizations:
 - organization:
 ..
 ..
 org_status: delete # delete for to be deleted organization(s)
 - organization:
 ..
 ..
 org_status: existing # existing for old organization(s)

The network.yaml file should contain the specific network.organization details along with the orderer information.

For reference, see network-fabric-remove-organization.yaml file here [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/samples].

[bookmark: run_network]

Run playbook

The remove-organization.yaml [https://github.com/hyperledger/bevel/platforms/hyperledger-fabric/configuration/remove-organization.yaml] playbook is used to remove organization(s) from the existing network. This can be done using the following command

ansible-playbook platforms/shared/configuration/remove-organization.yaml --extra-vars "@path-to-network.yaml"

NOTE: Make sure that the org_status label was set as new when the network is deployed for the first time. If you have additional applications, please deploy them as well.

 Adding a new peer to existing organization in Hyperledger Fabric

 [bookmark: adding-new-peer-to-existing-organization-in-a-running-fabric-network]

Adding a new peer to existing organization in Hyperledger Fabric

	Prerequisites

	Modifying Configuration File

	Run playbook

	Chaincode Installation

[bookmark: prerequisites]

Prerequisites

To add a new peer a fully configured Fabric network must be present already, i.e. a Fabric network which has Orderers, Peers, Channels (with all Peers already in the channels) and the organization to which the peer is being added. The corresponding crypto materials should also be present in their respective Hashicorp Vault.

NOTE: Addition of a new peer has been tested on an existing network which is created by Bevel. Networks created using other methods may be suitable but this has not been tested by Bevel team.

[bookmark: modifying-configuration-file]

Modifying Configuration File

A Sample configuration file for adding new peer is available here [https://github.com/hyperledger/bevel/blob/main/platforms/hyperledger-fabric/configuration/samples/network-fabricv-add-peer.yaml]. Please go through this file and all the comments there and edit accordingly.

For generic instructions on the Fabric configuration file, refer this guide.

While modifying the configuration file(network.yaml) for adding new peer, all the existing peers should have peerstatus tag as existing and the new peers should have peerstatus tag as new under network.channels e.g.

network:
 channels:
 - channel:
 ..
 ..
 participants:
 - organization:
 peers:
 - peer:
 ..
 ..
 peerstatus: new # new for new peers(s)
 gossipAddress: peer0.xxxx.com # gossip Address must be one existing peer
 - peer:
 ..
 ..
 peerstatus: existing # existing for existing peers(s)

and under network.organizations as

network:
 organizations:
 - organization:
 org_status: existing # org_status must be existing when adding peer
 ..
 ..
 services:
 peers:
 - peer:
 ..
 ..
 peerstatus: new # new for new peers(s)
 gossipAddress: peer0.xxxx.com # gossip Address must be one existing peer
 - peer:
 ..
 ..
 peerstatus: existing # existing for existing peers(s)

The network.yaml file should contain the specific network.organization details. Orderer information is needed if you are going to install/upgrade the existing chaincodes, otherwise it is not needed. And the org_status must be existing when adding peer.

Ensure the following is considered when adding the new peer on a different cluster:

	The CA server is accessible publicly or at least from the new cluster.

	The CA server public certificate is stored in a local path and that path provided in network.yaml.

	There is a single Hashicorp Vault and both clusters (as well as ansible controller) can access it.

	Admin User certs have been already generated and store in Vault (this is taken care of by deploy-network.yaml playbook if you are using Bevel to setup the network).

	The network.env.type is different for different clusters.

	The GitOps release directory gitops.release_dir is different for different clusters.

[bookmark: run-playbook]

Run playbook

The add-peer.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/add-peer.yaml] playbook is used to add a new peer to an existing organization in the existing network. This can be done using the following command

ansible-playbook platforms/hyperledger-fabric/configuration/add-peer.yaml --extra-vars "@path-to-network.yaml"

NOTE: The peerstatus is not required when the network is deployed for the first time but is mandatory for addition of new peer. If you have additional applications, please deploy them as well.

[bookmark: chaincode-install]

Chaincode Installation

Use the same network.yaml if you need to install chaincode on the new peers.

NOTE: With Fabric 2.2 chaincode lifecyle, re-installing chaincode on new peer is not needed as when the blocks are synced, the new peer will have access to already committed chaincode. If still needed, you can upgrade the version of the chaincode and install on all peers.

Refer this guide for details on installing chaincode.

 Adding a new RAFT orderer to existing Orderer organization in Hyperledger Fabric

 [bookmark: adding-new-orderer-to-existing-organization-in-a-running-fabric-network]

Adding a new RAFT orderer to existing Orderer organization in Hyperledger Fabric

	Prerequisites

	Modifying Configuration File

	Run playbook

	Chaincode Installation

[bookmark: prerequisites]

Prerequisites

To add a new Orderer node, a fully configured Fabric network must be present already, i.e. a Fabric network which has Orderers, Peers, Channels (with all Peers already in the channels) and the organization to which the peer is being added. The corresponding crypto materials should also be present in their respective Hashicorp Vault.

NOTE: Addition of a new Orderer node has been tested on an existing network which is created by Bevel. Networks created using other methods may be suitable but this has not been tested by Bevel team.
This works only for RAFT Orderer.

[bookmark: modifying-configuration-file]

Modifying Configuration File

A Sample configuration file for adding new orderer is available here [https://github.com/hyperledger/bevel/blob/main/platforms/hyperledger-fabric/configuration/samples/network-fabricv2-raft-add-orderer.yaml]. Please go through this file and all the comments there and edit accordingly.

For generic instructions on the Fabric configuration file, refer this guide.

While modifying the configuration file(network.yaml) for adding new peer, all the existing orderers should have status tag as existing and the new orderers should have status tag as new under network.organizations as

network:
 organizations:
 - organization:
 org_status: existing # org_status must be existing when adding peer
 ..
 ..
 services:
 orderers:
 - orderer:
 ..
 ..
 status: new # new for new peers(s)
 - orderer:
 ..
 ..
 status: existing # existing for existing peers(s)

The network.yaml file should contain the specific network.organization details.

Ensure the following is considered when adding the new orderer on a different cluster:

	The CA server is accessible publicly or at least from the new cluster.

	The CA server public certificate is stored in a local path and that path provided in network.yaml.

	There is a single Hashicorp Vault and both clusters (as well as ansible controller) can access it.

	Admin User certs have been already generated and store in Vault (this is taken care of by deploy-network.yaml playbook if you are using Bevel to setup the network).

	The network.env.type is different for different clusters.

	The GitOps release directory gitops.release_dir is different for different clusters.

[bookmark: run-playbook]

Run playbook

The add-orderer.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/add-orderer.yaml] playbook is used to add a new peer to an existing organization in the existing network. This can be done using the following command

ansible-playbook platforms/hyperledger-fabric/configuration/add-orderer.yaml --extra-vars "@path-to-network.yaml"

NOTE: The orderer.status is not required when the network is deployed for the first time but is mandatory for addition of new orderer.

 Installing and instantiating chaincode in Bevel deployed Hyperledger Fabric Network

 [bookmark: install-instantiate-chaincode-fabric]

Installing and instantiating chaincode in Bevel deployed Hyperledger Fabric Network

	Pre-requisites

	Modifying configuration file

	Chaincode Operations in Bevel for the deployed Hyperledger Fabric network

[bookmark: pre_req]

Pre-requisites

Hyperledger Fabric network deployed and network.yaml configuration file already set.

[bookmark: create_config_file]

Modifying configuration file

Refer this guide for details on editing the configuration file.

The network.yaml file should contain the specific network.organizations.services.peers.chaincode section, which is consumed when the chaincode-ops playbook is run

For reference, following snippet shows that section of network.yaml

network:
 ..
 ..
 organizations:
 - organization:
 name: manufacturer
 ..
 ..
 services:
 peers:
 - peer:
 name: peer0
 ..
 chaincode:
 name: "chaincode_name" #This has to be replaced with the name of the chaincode
 version: "chaincode_version" # This has to be different than the current version
 maindirectory: "chaincode_main" #The main directory where chaincode is needed to be placed
 repository:
 username: "git_username" # Git Service user who has rights to check-in in all branches
 password: "git_password"
 url: "github.com/hyperledger/bevel.git"
 branch: develop
 path: "chaincode_src" #The path to the chaincode
 arguments: 'chaincode_args' #Arguments to be passed along with the chaincode parameters
 endorsements: "" #Endorsements (if any) provided along with the chaincode

[bookmark: run_network]

Chaincode Operations in Bevel for the deployed Hyperledger Fabric network

The playbook chaincode-ops.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/chaincode-ops.yaml] is used to install and instantiate chaincode for the existing fabric network.
For Fabric v2.2 multiple operations such as approve, commit and invoke the chaincode are available in the same playbook.
This can be done by using the following command

 ansible-playbook platforms/hyperledger-fabric/configuration/chaincode-ops.yaml --extra-vars "@path-to-network.yaml"

NOTE: The same process is executed for installing and instantiating multiple chaincodes

 Upgrading chaincode in Hyperledger Fabric

 [bookmark: upgrading-chaincode]

Upgrading chaincode in Hyperledger Fabric

	Upgrading chaincode in Hyperledger Fabric

	Pre-requisites

	Modifying configuration file

	Run playbook for Fabric version 1.4.x

	Run playbook for Fabric version 2.2.x

[bookmark: pre_req]

Pre-requisites

Hyperledger Fabric network deployed, network.yaml configuration file already set and chaincode is installed and instantiated or packaged, approved and commited in case of Fabric version 2.2.

[bookmark: create_config_file]

Modifying configuration file

Refer this guide for details on editing the configuration file.

The network.yaml file should contain the specific network.organizations.services.peers.chaincode.arguments, network.organizations.services.peers.chaincode.version and network.organizations.services.peers.chaincode.name variables which are used as arguments while upgrading the chaincode.

For reference, following snippet shows that section of network.yaml

network:
 ..
 ..
 organizations:
 - organization:
 name: manufacturer
 ..
 ..
 services:
 peers:
 - peer:
 name: peer0
 ..
 chaincode:
 name: "chaincode_name" #This has to be replaced with the name of the chaincode
 version: "chaincode_version" # This has to be greater than the current version, should be an integer.
 maindirectory: "chaincode_main" #The main directory where chaincode is needed to be placed
 lang: "java" # The chaincode language, optional field with default vaule of 'go'.
 repository:
 username: "git_username" # Git Service user who has rights to check-in in all branches
 password: "git_password"
 url: "github.com/hyperledger/bevel.git"
 branch: develop
 path: "chaincode_src" #The path to the chaincode
 arguments: 'chaincode_args' #Arguments to be passed along with the chaincode parameters
 endorsements: "" #Endorsements (if any) provided along with the chaincode

[bookmark: run_network]

Run playbook for Fabric version 1.4.x

The playbook chaincode-upgrade.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/chaincode-upgrade.yaml] is used to upgrade chaincode to a new version in the existing fabric network with version 1.4.x.
This can be done by using the following command

 ansible-playbook platforms/hyperledger-fabric/configuration/chaincode-upgrade.yaml --extra-vars "@path-to-network.yaml"

Run playbook for Fabric version 2.2.x

The playbook chaincode-ops.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/chaincode-ops.yaml] is used to upgrade chaincode to a new version in the existing fabric network with version 2.2.x.
This can be done by using the following command

 ansible-playbook platforms/hyperledger-fabric/configuration/chaincode-ops.yaml --extra-vars "@path-to-network.yaml" -e "add_new_org='false'"

NOTE: The Chaincode should be upgraded for all participants of the channel.

 Deploying Fabric Operations Console

 [bookmark: deploying-fabric-operations-console]

Deploying Fabric Operations Console

	Prerequisites

	Modifying Configuration File

	Run playbook

[bookmark: prerequisites]

Prerequisites

The Fabric Operations Console [https://github.com/hyperledger-labs/fabric-operations-console] can be deployed along with the Fabric Network.
You can then manually add peers, orderers, CA to the console by importing appropriate JSON files.

The Helm Chart for Fabric Operations Console is available here [https://github.com/hyperledger/bevel/blob/main/platforms/hyperledger-fabric/charts/operations_console].

If you want to create the JSON files automatically by using our ansible playbook, the CA server endpoint should be accessible publicly and that endpoint details added in organization.ca_data.url.

NOTE: The Fabric Operations Console has only been tested with operations.tls.enabled = false for Fabric Peers, Orderers and CAs.

[bookmark: modifying-configuration-file]

Modifying Configuration File

A Sample configuration file for deploying Operations Console is available here [https://github.com/hyperledger/bevel/blob/main/platforms/hyperledger-fabric/configuration/samples/network-fabricv2-raft.yaml]. Main change being addition of a new key organization.fabric_console which when enabled will deploy the operations console for the organization.

For generic instructions on the Fabric configuration file, refer this guide.

[bookmark: run-playbook]

Run playbook

The deploy-fabric-console.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/deploy-fabric-console.yaml] playbook should be used to automatically generate the JSON files and deploy the console. This can be done using the following command

ansible-playbook platforms/hyperledger-fabric/configuration/deploy-fabric-console.yaml --extra-vars "@/path/to/network.yaml"

This will deploy the console which will be available over your proxy at https://<org_name>console.<org_namespace>.<org_external_url_suffix>

The JSON files will be available in <project_dir>/build/assets folder. You can import individual files on respective organization console as well as use bulk import for uploading the zip file <project_dir>/build/console_assets.zip

Refer this guide [https://github.com/hyperledger-labs/fabric-operations-console#readme] for details on operating the Console.

 Configuration file specification: R3 Corda

Configuration file specification: R3 Corda

A network.yaml file is the base configuration file for setting up a Corda DLT network. This file contains all the information related to the infrastructure and network specifications. Here is the structure of it.
[image: ../_images/TopLevelClass-Corda.png]

Before setting up a Corda DLT/Blockchain network, this file needs to be updated with the required specifications.
A sample configuration file is provide in the repo path:platforms/r3-corda/configuration/samples/network-cordav2.yaml

A json-schema definition is provided in platforms/network-schema.json to assist with semantic validations and lints. You can use your favorite yaml lint plugin compatible with json-schema specification, like redhat.vscode-yaml for VSCode. You need to adjust the directive in template located in the first line based on your actual build directory:

yaml-language-server: $schema=../platforms/network-schema.json

The configurations are grouped in the following sections for better understanding.

	type

	version

	frontend

	env

	docker

	network_services

	organizations

Here is the snapshot from the sample configuration file

[image: ../_images/NetworkYamlCorda1.png]

The sections in the sample configuration file are

type defines the platform choice like corda/fabric/quorum. Use corda for Corda Opensource and corda-enterprise for Corda Enterprise.

version defines the version of platform being used, here in example the Corda version is 4.0, the corda version 4.7 is supported by latest release. Please note only 4.4 above is supported for Corda Enterprise.

frontend is a flag which defines if frontend is enabled for nodes or not. Its value can only be enabled/disabled. This is only applicable if the sample Supplychain App is being installed.

env section contains the environment type and additional (other than 8443) Ambassador port configuration. Value for proxy field under this section has to be ‘ambassador’ as ‘haproxy’ has not been implemented for Corda.

The snapshot of the env section with example values is below

 env:
 type: "env-type" # tag for the environment. Important to run multiple flux on single cluster
 proxy: ambassador # value has to be 'ambassador' as 'haproxy' has not been implemented for Corda
 ambassadorPorts: # Any additional Ambassador ports can be given here, this is valid only if proxy='ambassador'
 portRange: # For a range of ports
 from: 15010
 to: 15043
 # ports: 15020,15021 # For specific ports
 loadBalancerSourceRanges: # (Optional) Default value is '0.0.0.0/0', this value can be changed to any other IP adres or list (comma-separated without spaces) of IP adresses, this is valid only if proxy='ambassador'
 retry_count: 20 # Retry count for the checks
 external_dns: enabled # Should be enabled if using external-dns for automatic route configuration

The fields under env section are

	Field
	Description

	type
	Environment type. Can be like dev/test/prod.

	proxy
	Choice of the Cluster Ingress controller. Currently supports ambassador only as haproxy has not been implemented for Corda

	ambassadorPorts
	Any additional Ambassador ports can be given here. This is only valid if proxy: ambassador

	loadBalancerSourceRanges
	(Optional) Restrict inbound access to a single or list of IP adresses for the public Ambassador ports to enhance Bevel network security. This is only valid if proxy: ambassador.

	retry_count
	Retry count for the checks. Use a large number if your kubernetes cluster is slow.

	external_dns
	If the cluster has the external DNS service, this has to be set enabled so that the hosted zone is automatically updated.

docker section contains the credentials of the repository where all the required images are built and stored.

For Opensource Corda, the required instructions are found here.

For Corda Enterprise, all Docker images has to be built and stored in a private Docker registry before running the Ansible playbooks. The required instructions are found here.

The snapshot of the docker section with example values is below

 # Docker registry details where images are stored. This will be used to create k8s secrets
 # Please ensure all required images are built and stored in this registry.
 docker:
 url: "<url>"
 username: "<username>"
 password: "<password>"

The fields under docker section are

	Field
	Description

	url
	Docker registry url. Must be private registry for Corda Enterprise

	username
	Username credential required for login

	password
	Password credential required for login

NOTE: Please follow these instructions to build and store the docker images before running the Ansible playbooks.

The snapshot of the network_services section with example values is below

 # Remote connection information for doorman/idman and networkmap (will be blank or removed for hosting organization)
 network_services:
 - service:
 name: doorman
 type: doorman
 uri: https://doorman.test.corda.blockchaincloudpoc.com:8443
 certificate: home_dir/platforms/r3-corda/configuration/build/corda/doorman/tls/ambassador.crt
 crlissuer_subject: "CN=Corda TLS CRL Authority,OU=Corda UAT,O=R3 HoldCo LLC,L=New York,C=US"
 - service:
 name: networkmap
 type: networkmap
 uri: https://networkmap.test.corda.blockchaincloudpoc.com:8443
 certificate: home_dir/platforms/r3-corda/configuration/build/corda/networkmap/tls/ambassador.crt
 truststore: home_dir/platforms/r3-corda-ent/configuration/build/networkroottruststore.jks #Certificate should be encoded in base64 format
 truststore_pass: rootpassword

The network_services section contains a list of doorman/networkmap which is exposed to the network. Each service has the following fields:

	Field
	Description

	type
	For Corda, networkmap and doorman (idman for Corda Enterprise) are the only valid type of network_services.

	name
	Only for Corda Enterprise. Name of the idman/networkmap service.

	uri
	Doorman/IDman/Networkmap external URL. This should be reachable from all nodes.

	certificate
	Absolute path to the public certificates for Doorman/IDman and Networkmap.

	crlissuer_subject
	Only for Corda Enterprise Idman. Subject of the CRL Issuer.

	truststore
	Only for Corda Enterprise Networkmap. Absolute path to the base64 encoded networkroot truststore.

	truststore_pass
	Only for Corda Enterprise Networkmap. Truststore password

The organizations section allows specification of one or many organizations that will be connecting to a network. If an organization is also hosting the root of the network (e.g. doorman, membership service, etc), then these services should be listed in this section as well.
In the sample example the 1st Organisation is hosting the root of the network, so the services doorman, nms and notary are listed under the 1st organization’s service.

The snapshot of an organization field with sample values is below

 - organization:
 name: manufacturer
 country: CH
 state: Zurich
 location: Zurich
 subject: "O=Manufacturer,OU=Manufacturer,L=Zurich,C=CH"
 type: node
 external_url_suffix: test.corda.blockchaincloudpoc.com
 cloud_provider: aws # Options: aws, azure, gcp

Each organization under the organizations section has the following fields.

	Field
	Description

	name
	Name of the organization

	country
	Country of the organization

	state
	State of the organization

	location
	Location of the organization

	subject
	Subject format can be referred at OpenSSL Subject

	subordinate_ca_subject
	Only for Corda Enterprise. Subordinate CA Subject for the CENM.

	type
	This field can be doorman-nms-notary/node/cenm

	version
	Defines the CENM version. Only for Corda Enterprise, must be 1.5

	external_url_suffix
	Public url suffix of the cluster. This is the configured path for the Ambassador Service on the DNS provider.

	cloud_provider
	Cloud provider of the Kubernetes cluster for this organization. This field can be aws, azure or gcp

	aws
	When the organization cluster is on AWS

	k8s
	Kubernetes cluster deployment variables.

	vault
	Contains Hashicorp Vault server address and root-token in the example

	gitops
	Git Repo details which will be used by GitOps/Flux.

	Firewall
	Only for Corda Enterprise Networkmap. Contains firewall options and credentials

	cordapps (optional)
	Cordapps Repo details which will be used to store/fetch cordapps jar

	services
	Contains list of services which could be peers/doorman/nms/notary/idman/signer

For the aws and k8s field the snapshot with sample values is below

 aws:
 access_key: "<aws_access_key>" # AWS Access key, only used when cloud_provider=aws
 secret_key: "<aws_secret>" # AWS Secret key, only used when cloud_provider=aws

 # Kubernetes cluster deployment variables.
 k8s:
 region: "<k8s_region>"
 context: "<cluster_context>"
 config_file: "<path_to_k8s_config_file>"

The aws field under each organisation contains: (This will be ignored if cloud_provider is not ‘aws’)

	Field
	Description

	access_key
	AWS Access key

	secret_key
	AWS Secret key

The k8s field under each organisation contains

	Field
	Description

	context
	Context/Name of the cluster where the organization entities should be deployed

	config_file
	Path to the kubernetes cluster configuration file

For gitops fields the snapshot from the sample configuration file with the example values is below

 # Git Repo details which will be used by GitOps/Flux.
 gitops:
 git_protocol: "https" # Option for git over https or ssh
 git_url: "https://github.com/<username>/bevel.git" # Gitops htpps or ssh url for flux value files
 branch: "<branch_name>" # Git branch where release is being made
 release_dir: "platforms/r3-corda/releases/dev" # Relative Path in the Git repo for flux sync per environment.
 chart_source: "platforms/r3-corda/charts" # Relative Path where the Helm charts are stored in Git repo
 git_repo: "github.com/<username>/bevel.git"
 username: "<username>" # Git Service user who has rights to check-in in all branches
 password: "<password>" # Git Server user password/personal token (Optional for ssh; Required for https)
 email: "<git_email>" # Email to use in git config
 private_key: "<path to gitops private key>" # Path to private key (Optional for https; Required for ssh)

The gitops field under each organization contains

	Field
	Description

	git_protocol
	Option for git over https or ssh. Can be https or ssh

	git_url
	SSH or HTTPs url of the repository where flux should be synced

	branch
	Branch of the repository where the Helm Charts and value files are stored

	release_dir
	Relative path where flux should sync files

	chart_source
	Relative path where the helm charts are stored

	git_repo
	Gitops git repo URL https URL for git push like "github.com/hyperledger/bevel.git"

	username
	Username which has access rights to read/write on repository

	password
	Password of the user which has access rights to read/write on repository (Optional for ssh; Required for https)

	email
	Email of the user to be used in git config

	private_key
	Path to the private key file which has write-access to the git repo (Optional for https; Required for ssh)

The credentials field under each organization contains

	Field
	Description

	keystore
	Contains passwords for keystores

	truststore
	Contains passwords for truststores

	ssl
	Contains passwords for ssl keystores

For organization as type cenm the credential block looks like

 credentials:
 keystore:
 keystore: cordacadevpass #notary keystore password
 idman: password #idman keystore password
 networkmap: password #networkmap keystore password
 subordinateca: password #subordinateCA keystore password
 rootca: password # rootCA keystore password
 tlscrlsigner: password #tls-crl-signer keystore password
 truststore:
 truststore: trustpass #notary truststore password
 rootca: password #network root truststore password
 ssl: password #corda ssl truststore password
 ssl:
 networkmap: password #ssl networkmap keystore password
 idman: password #ssl idman keystore password
 signer: password #ssl signer keystore password
 root: password #ssl root keystore password
 auth: password #ssl auth keystore password

For organization as type node the credential section is under peers section and looks like

 credentials:
 truststore: trustpass #node truststore password
 keystore: cordacadevpass #node keystore password

For cordapps fields the snapshot from the sample configuration file with the example values is below: This has not been implented for Corda Enterprise.

 # Cordapps Repository details (optional use if cordapps jar are store in a repository)
 cordapps:
 jars:
 - jar:
 # e.g https://alm.accenture.com/nexus/repository/AccentureBlockchainFulcrum_Release/com/supplychain/bcc/cordapp-supply-chain/0.1/cordapp-supply-chain-0.1.jar
 url:
 - jar:
 # e.g https://alm.accenture.com/nexus/repository/AccentureBlockchainFulcrum_Release/com/supplychain/bcc/cordapp-contracts-states/0.1/cordapp-contracts-states-0.1.jar
 url:
 username: "cordapps_repository_username"
 password: "cordapps_repository_password"

The cordapps optional field under each organization contains

	Field
	Description

	jars
	Contains list of jars with jar URL that needs to fetched and put into organisation nodes

	username
	Cordapps Repository username

	password
	Cordapps Repository password

For Corda Enterprise, following additional fields have been added under each organisation.

 firewall:
 enabled: true # true if firewall components are to be deployed
 subject: "CN=Test Firewall CA Certificate, OU=HQ, O=HoldCo LLC, L=New York, C=US"
 credentials:
 firewallca: firewallcapassword
 float: floatpassword
 bridge: bridgepassword

The Firewall field under each node type organization contains; valid only for enterprise corda

	Field
	Description

	enabled
	true/false for enabling firewall (external bridge and float)

	subject
	Certificate Subject for firewall, format at OpenSSL Subject

	credentials
	Contains credentials for bridge and float

The services field for each organization under organizations section of Corda contains list of services which could be doorman/idman/nms/notary/peers for opensource, and additionally idman/networkmap/signer/bridge/float for Corda Enterprise.

The snapshot of doorman service with example values is below

 services:
 doorman:
 name: doormanskar
 subject: "CN=Corda Doorman CA,OU=DLT,O=DLT,L=Berlin,C=DE"
 db_subject: "/C=US/ST=California/L=San Francisco/O=My Company Ltd/OU=DBA/CN=mongoDB"
 type: doorman
 ports:
 servicePort: 8080
 targetPort: 8080
 tls: "on"

The fields under doorman service are

	Field
	Description

	name
	Name for the Doorman service

	subject
	Certificate Subject for Doorman service. Subject format can be referred at OpenSSL Subject

	db_subject
	Certificate subject for mongodb database of doorman

	type
	Service type must be doorman

	ports.servicePort
	HTTP port number where doorman service is accessible

	ports.targetPort
	HTTP target port number of the doorman docker-container

	tls
	On/off based on whether we want TLS on/off for doorman

The snapshot of nms service example values is below

 nms:
 name: networkmapskar
 subject: "CN=Network Map,OU=FRA,O=FRA,L=Berlin,C=DE"
 db_subject: "/C=US/ST=California/L=San Francisco/O=My Company Ltd/OU=DBA/CN=mongoDB"
 type: networkmap
 ports:
 servicePort: 8080
 targetPort: 8080
 tls: "on"

The fields under nms service are

	Field
	Description

	name
	Name of the NetworkMap service

	subject
	Certificate Subject for NetworkMap service. Subject format can be referred at OpenSSL Subject

	db_subject
	Certificate subject for mongodb database of nms.

	type
	Service type must be networkmap

	ports.servicePort
	HTTP port number where NetworkMap service is accessible

	ports.targetPort
	HTTP target port number of the NetworkMap docker-container

	tls
	On/off based on whether we want TLS on/off for nms

For Corda Enterprise, following services must be added to CENM Support.

The snapshot of zone service with example values is below

 services:
 zone:
 name: zone
 type: cenm-zone
 ports:
 enm: 25000
 admin: 12345

The fields under zone service are

	Field
	Description

	name
	Name for the Zone service

	type
	Service type must be cenm-zone

	ports.enm
	HTTP enm port number where zone service is accessible internally

	ports.admin
	HTTP admin port number of zone service

The snapshot of auth service with example values is below

 auth:
 name: auth
 subject: "CN=Test TLS Auth Service Certificate, OU=HQ, O=HoldCo LLC, L=New York, C=US"
 type: cenm-auth
 port: 8081
 username: admin
 userpwd: p4ssWord

The fields under auth service are

	Field
	Description

	name
	Name for the Auth service

	subject
	Certificate Subject for Auth service. Subject format can be referred at OpenSSL Subject

	type
	Service type must be cenm-auth

	ports
	HTTP port number where auth service is accessible internally

	username
	Admin user name for auth service

	userpwd
	Admin password for auth service

The snapshot of gateway service with example values is below

 gateway:
 name: gateway
 subject: "CN=Test TLS Gateway Certificate, OU=HQ, O=HoldCo LLC, L=New York, C=US"
 type: cenm-gateway
 ports:
 servicePort: 8080
 ambassadorPort: 15008

The fields under gateway service are

	Field
	Description

	name
	Name for the Gateway service

	subject
	Certificate Subject for Gateway service. Subject format can be referred at OpenSSL Subject

	type
	Service type must be cenm-gateway

	ports.servicePort
	HTTP port number where gateway service is accessible internally

	ports.ambassadorPort
	Port where gateway service is exposed via Ambassador

The snapshot of idman service with example values is below

 services:
 idman:
 name: idman
 subject: "CN=Test Identity Manager Service Certificate, OU=HQ, O=HoldCo LLC, L=New York, C=US"
 crlissuer_subject: "CN=Corda TLS CRL Authority,OU=Corda UAT,O=R3 HoldCo LLC,L=New York,C=US"
 type: cenm-idman
 port: 10000

The fields under idman service are

	Field
	Description

	name
	Name for the IDman service

	subject
	Certificate Subject for Idman service. Subject format can be referred at OpenSSL Subject

	crlissuer_subject
	Certificate subject for CRL Issuer service

	type
	Service type must be cenm-idman

	port
	HTTP port number where idman service is accessible internally

The snapshot of networkmap service with example values is below

 services:
 networkmap:
 name: networkmap
 subject: "CN=Test Network Map Service Certificate, OU=HQ, O=HoldCo LLC, L=New York, C=US"
 type: cenm-networkmap
 ports:
 servicePort: 10000
 targetPort: 10000

The fields under networkmap service are

	Field
	Description

	name
	Name for the Networkmap service

	subject
	Certificate Subject for Networkmap service. Subject format can be referred at OpenSSL Subject

	type
	Service type must be cenm-networkmap

	ports.servicePort
	HTTP port number where networkmap service is accessible internally

	ports.targetPort
	HTTP target port number of the networkmap docker-container

The snapshot of signer service with example values is below

 services:
 signer:
 name: signer
 subject: "CN=Test Subordinate CA Certificate, OU=HQ, O=HoldCo LLC, L=New York, C=US"
 type: cenm-signer
 ports:
 servicePort: 8080
 targetPort: 8080

The fields under signer service are

	Field
	Description

	name
	Name for the Signer service

	subject
	Certificate Subject for Signer service. Subject format can be referred at OpenSSL Subject

	type
	Service type must be cenm-signer

	ports.servicePort
	HTTP port number where signer service is accessible

	ports.targetPort
	HTTP target port number of the signer docker-container

The snapshot of notary service with example values is below

 # Currently only supporting a single notary cluster, but may want to expand in the future
 notary:
 name: notary1
 subject: "O=Notary,OU=Notary,L=London,C=GB"
 serviceName: "O=Notary Service,OU=Notary,L=London,C=GB" # available for Corda 4.7 onwards to support HA Notary
 type: notary
 p2p:
 port: 10002
 targetPort: 10002
 ambassador: 15010 #Port for ambassador service (must be from env.ambassadorPorts above)
 rpc:
 port: 10003
 targetPort: 10003
 rpcadmin:
 port: 10005
 targetPort: 10005
 dbtcp:
 port: 9101
 targetPort: 1521
 dbweb:
 port: 8080
 targetPort: 81

The fields under notary service are

	Field
	Description

	name
	Name of the notary service

	subject
	Certificate Subject for notary node. Subject format can be referred at OpenSSL Subject

	serviceName
	Certificate Subject for notary service applicable from Corda 4.7 onwards. Subject format can be referred at OpenSSL Subject

	type
	Service type must be notary

	validating
	Only for Corda Enterprise Notary. Determines if Notary is validating or non-validating. Use true or false

	emailAddress
	Only for Corda Enterprise Notary. Email address in the notary conf.

	p2p.port
	Corda Notary P2P port. Used for communication between the notary and nodes of same network

	p2p.targetport
	P2P Port where notary service is running.

	p2p.ambassadorport
	Port where notary service is exposed via Ambassador

	rpc.port
	Corda Notary RPC port. Used for communication between the notary and nodes of same network

	rpc.targetport
	RPC Port where notary services is running.

	rpcadmin.port
	Corda Notary Rpcadmin port. Used for RPC admin binding

	dbtcp.port
	Corda Notary DbTcp port. Used to expose database to other services

	dbtcp.targetPort
	Corda Notary DbTcp target port. Port where the database services are running

	dbweb.port
	Corda Notary dbweb port. Used to expose dbweb to other services

	dbweb.targetPort
	Corda Notary dbweb target port. Port where the dbweb services are running

The snapshot of float service with example values is below

 float:
 name: float
 subject: "CN=Test Float Certificate, OU=HQ, O=HoldCo LLC, L=New York, C=US"
 external_url_suffix: test.cordafloat.blockchaincloudpoc.com
 cloud_provider: aws # Options: aws, azure, gcp
 aws:
 access_key: "aws_access_key" # AWS Access key, only used when cloud_provider=aws
 secret_key: "aws_secret_key" # AWS Secret key, only used when cloud_provider=aws
 k8s:
 context: "float_cluster_context"
 config_file: "float_cluster_config"
 vault:
 url: "float_vault_addr"
 root_token: "float_vault_root_token"
 gitops:
 git_url: "https://github.com/<username>/bevel.git" # Gitops https or ssh url for flux value files
 branch: "develop" # Git branch where release is being made
 release_dir: "platforms/r3-corda-ent/releases/float" # Relative Path in the Git repo for flux sync per environment.
 chart_source: "platforms/r3-corda-ent/charts" # Relative Path where the Helm charts are stored in Git repo
 git_repo: "github.com/<username>/bevel.git" # Gitops git repository URL for git push
 username: "git_username" # Git Service user who has rights to check-in in all branches
 password: "git_access_token" # Git Server user password/access token (Optional for ssh; Required for https)
 email: "git_email" # Email to use in git config
 private_key: "path_to_private_key" # Path to private key file which has write-access to the git repo (Optional for https; Required for ssh)
 ports:
 p2p_port: 40000
 tunnelport: 39999
 ambassador_tunnel_port: 15021
 ambassador_p2p_port: 15020

The fields under float service are below. Valid for corda enterprise only.

	Field
	Description

	name
	Name for the float service

	subject
	Certificate Subject for Float service. Subject format can be referred at OpenSSL Subject

	external_url_suffix
	Public url suffix of the cluster. This is the configured path for the Ambassador Service on the DNS provider.

	cloud_provider
	Cloud provider of the Kubernetes cluster for this organization. This field can be aws, azure or gcp

	aws
	When the organization cluster is on AWS

	k8s
	Kubernetes cluster deployment variables.

	vault
	Contains Hashicorp Vault server address and root-token in the example

	gitops
	Git Repo details which will be used by GitOps/Flux.

	ports.p2p_port
	Peer to peer service port

	ports.tunnel_port
	Tunnel port for tunnel between float and bridge service

	port.ambassador_tunnel_port
	Ambassador port for tunnel between float and bridge service

	gitops
	Ambassador port Peer to peer

The fields under bridge service are below. Valid for corda enterprise only.

	Field
	Description

	name
	Name for the bridge service

	subject
	Certificate Subject for bridge service. Subject format can be referred at OpenSSL Subject

The snapshot of peer service with example values is below

 # The participating nodes are named as peers
 services:
 peers:
 - peer:
 name: manufacturerskar
 subject: "O=Manufacturer,OU=Manufacturer,L=47.38/8.54/Zurich,C=CH"
 type: node
 p2p:
 port: 10002
 targetPort: 10002
 ambassador: 15010 #Port for ambassador service (must be from env.ambassadorPorts above)
 rpc:
 port: 10003
 targetPort: 10003
 rpcadmin:
 port: 10005
 targetPort: 10005
 dbtcp:
 port: 9101
 targetPort: 1521
 dbweb:
 port: 8080
 targetPort: 81
 springboot: # This is for the springboot server
 targetPort: 20001
 port: 20001
 expressapi: # This is for the express api server
 targetPort: 3000
 port: 3000

The fields under each peer service are

	Field
	Description

	name
	Name of the Corda Node

	type
	Service type must be node

	subject
	The node legal name subject.

	auth
	Vault auth of the corda Node

	p2p.port
	Corda Node P2P port.Used for communication between the nodes of same network

	rpc.port
	Corda Node RPC port. Used for communication between the nodes of different network

	rpcadmin.port
	Corda Node Rpcadmin port. Used for RPC admin binding

	dbtcp.port
	Corda Node DbTcp port. Used to expose database to other services

	dbtcp.targetPort
	Corda Node DbTcp target port. Port where the database services are running

	dbweb.port
	Corda Node dbweb port. Used to expose dbweb to other services

	dbweb.targetPort
	Corda Node dbweb target port. Port where the dbweb services are running

	springboot.port
	Springboot server port. Used to expose springboot to other services

	springboot.targetPort
	Springboot server target port. Port where the springboot services are running

	expressapi.port
	Expressapi port. Used to expose expressapi to other services

	expressapi.targetPort
	Expressapi target port. Port where the expressapi services are running

 Adding cordapps to R3 Corda network

 [bookmark: adding-cordapps]

Adding cordapps to R3 Corda network

1. Adding directly from build directory

Pre-requisites:

R3 Corda network deployed and network.yaml configuration file already set.

Build CorDapp jars

Build the CorDapp jars. If you have multiple jars, place them in a single location e.g. at path/to/cordapp-jars.

Run playbook

The playbook deploy-cordapps.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda/configuration/deploy-cordapps.yaml] is used to deploy cordapps over the existing R3 Corda network.
This can be done manually using the following command

ansible-playbook platforms/r3-corda/configuration/deploy-cordapps.yaml -e "@path-to-network.yaml" -e "source_dir='path/to/cordapp-jars'"

2. Adding from a nexus repository

Pre-requisites:

Build the CorDapp jars. If you have multiple jars, place them in a single location e.g. at path/to/cordapp-jars.
Publishing the CorDapp jars to the nexus repository.

In order to publish the jars add the following information in example\supplychain-app\corda\gradle.properties file

Repository URL e.g : https://alm.accenture.com/nexus/repository/AccentureBlockchainFulcrum_Release/
repoURI=nexus_repository_url
Repository credentials
repoUser=repository_user_name
repoPassword=repository_user_password

Add the appropriate jar information as artifacts in example\supplychain-app\corda\build.gradle file, change this file only if you need to add or remove jars other that the ones mentioned below

publishing{
 publications {
 maven1(MavenPublication) {
 artifactId = 'cordapp-supply-chain'
 artifact('build/cordapp-supply-chain-0.1.jar')
 }
 maven2(MavenPublication) {
 artifactId = 'cordapp-contracts-states'
 artifact('build/cordapp-contracts-states-0.1.jar')
 }
 }
 repositories {
 maven {
 url project.repoURI
 credentials {
 username project.repoUser
 password project.repoPassword
 }
 }
 }
}

Publishing the artifacts/jars, use the below command to publish the jars into the nexus repository

gradle publish

Change the corda configuration file to add jar information under the cordapps field of required organisation.

Example given in the sample configuration fileplatforms/r3-corda/configuration/samples/network-cordav2.yaml

The snapshot from the sample configuration file with the example values is below

 # Cordapps Repository details (optional use if cordapps jar are store in a repository)
 cordapps:
 jars:
 - jar:
 # e.g https://alm.accenture.com/nexus/repository/AccentureBlockchainFulcrum_Release/com/supplychain/bcc/cordapp-supply-chain/0.1/cordapp-supply-chain-0.1.jar
 url:
 - jar:
 # e.g https://alm.accenture.com/nexus/repository/AccentureBlockchainFulcrum_Release/com/supplychain/bcc/cordapp-contracts-states/0.1/cordapp-contracts-states-0.1.jar
 url:
 username: "cordapps_repository_username"
 password: "cordapps_repository_password"

Adding the jars by deploying the network

After the configuration file is updated and saved, run the following command from the bevel folder to deploy your network.

ansible-playbook platforms/shared/configuration/site.yaml --extra-vars "@path-to-network.yaml"

This will deploy the network and add the cordapps.

 Adding a new organization in R3 Corda

 [bookmark: adding-new-org-to-existing-network-in-corda]

Adding a new organization in R3 Corda

	Prerequisites

	Create configuration file

	Run playbook

[bookmark: prerequisites]

Prerequisites

To add a new organization, Corda Doorman/Idman and Networkmap services should already be running. The public certificates from Doorman/Idman and Networkmap should be available and specified in the configuration file.

NOTE: Addition of a new organization has been tested on an existing network which is created by Bevel. Networks created using other methods may be suitable but this has not been tested by Bevel team.

[bookmark: create_config_file]

Create Configuration File

Refer this guide for details on editing the configuration file.

The network.yaml file should contain the specific network.organization details along with the network service information about the networkmap and doorman service.

NOTE: Make sure the doorman and networkmap service certificates are in plain text and not encoded in base64 or any other encoding scheme, along with correct paths to them mentioned in network.yaml.

For reference, sample network.yaml file looks like below (but always check the latest at platforms/r3-corda/configuration/samples):

network:
 # Network level configuration specifies the attributes required for each organization
 # to join an existing network.
 type: corda
 version: 4.0
 #enabled flag is frontend is enabled for nodes
 frontend: enabled

 #Environment section for Kubernetes setup
 env:
 type: "env_type" # tag for the environment. Important to run multiple flux on single cluster
 proxy: ambassador # value has to be 'ambassador' as 'haproxy' has not been implemented for Corda
 ambassadorPorts: # Any additional Ambassador ports can be given here, this is valid only if proxy='ambassador'
 portRange: # For a range of ports
 from: 15010
 to: 15043
 # ports: 15020,15021 # For specific ports
 retry_count: 20 # Retry count for the checks
 external_dns: enabled # Should be enabled if using external-dns for automatic route configuration

 # Docker registry details where images are stored. This will be used to create k8s secrets
 # Please ensure all required images are built and stored in this registry.
 # Do not check-in docker_password.
 docker:
 url: "docker_url"
 username: "docker_username"
 password: "docker_password"

 # Remote connection information for doorman and networkmap (will be blank or removed for hosting organization)
 network_service:
 - service:
 type: doorman
 uri: https://doorman.test.corda.blockchaincloudpoc.com:8443
 certificate: home_dir/platforms/r3-corda/configuration/build/corda/doorman/tls/ambassador.crt
 - service:
 type: networkmap
 uri: https://networkmap.test.corda.blockchaincloudpoc.com:8443
 certificate: home_dir/platforms/r3-corda/configuration/build/corda/networkmap/tls/ambassador.crt

 # Allows specification of one or many organizations that will be connecting to a network.
 # If an organization is also hosting the root of the network (e.g. doorman, membership service, etc),
 # then these services should be listed in this section as well.
 organizations:
 # Specification for the new organization. Each organization maps to a VPC and a separate k8s cluster
 - organization:
 name: neworg
 country: US
 state: New York
 location: New York
 subject: "O=Neworg,OU=Neworg,L=New York,C=US"
 type: node
 external_url_suffix: test.corda.blockchaincloudpoc.com

 cloud_provider: aws # Options: aws, azure, gcp
 aws:
 access_key: "aws_access_key" # AWS Access key, only used when cloud_provider=aws
 secret_key: "aws_secret_key" # AWS Secret key, only used when cloud_provider=aws

 # Kubernetes cluster deployment variables. The config file path and name has to be provided in case
 # the cluster has already been created.
 k8s:
 region: "cluster_region"
 context: "cluster_context"
 config_file: "cluster_config"

 # Hashicorp Vault server address and root-token. Vault should be unsealed.
 # Do not check-in root_token
 vault:
 url: "vault_addr"
 root_token: "vault_root_token"

 # Git Repo details which will be used by GitOps/Flux.
 # Do not check-in git_password
 gitops:
 git_protocol: "https" # Option for git over https or ssh
 git_url: "gitops_ssh_url" # Gitops https or ssh url for flux value files like "https://github.com/hyperledger/bevel.git"
 branch: "gitops_branch" # Git branch where release is being made
 release_dir: "gitops_release_dir" # Relative Path in the Git repo for flux sync per environment.
 chart_source: "gitops_charts" # Relative Path where the Helm charts are stored in Git repo
 git_repo: "gitops_repo_url" # Gitops git repository URL for git push like "github.com/hyperledger/bevel.git"
 username: "git_username" # Git Service user who has rights to check-in in all branches
 password: "git_password" # Git Server user access token (Optional for ssh; Required for https)
 email: "git_email" # Email to use in git config
 private_key: "path_to_private_key" # Path to private key file which has write-access to the git repo (Optional for https; Required for ssh)

 services:
 peers:
 - peer:
 name: neworg
 subject: "O=Neworg,OU=Neworg,L=New York,C=US"
 type: node
 p2p:
 port: 10002
 targetPort: 10002
 ambassador: 10070 #Port for ambassador service (use one port per org if using single cluster)
 rpc:
 port: 10003
 targetPort: 10003
 rpcadmin:
 port: 10005
 targetPort: 10005
 dbtcp:
 port: 9101
 targetPort: 1521
 dbweb:
 port: 8080
 targetPort: 81
 springboot:
 targetPort: 20001
 port: 20001
 expressapi:
 targetPort: 3000
 port: 3000

[bookmark: run_network]

Run playbook

The add-new-organization.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/add-new-organization.yaml] playbook is used to add a new organization to the existing network. This can be done using the following command

ansible-playbook platforms/shared/configuration/add-new-organization.yaml --extra-vars "@path-to-network.yaml"

NOTE: If you have CorDapps and applications, please deploy them as well.

 Adding a new Notary organization in R3 Corda Enterprise

 [bookmark: adding-new-notary-to-existing-network-in-corda]

Adding a new Notary organization in R3 Corda Enterprise

Corda Enterprise Network Map (CENM) 1.2 does not allow dynamic addition of new Notaries to an existing network via API Call. This process is manual and involves few steps as described in the Corda Official Documentation here [https://docs.corda.net/docs/cenm/1.2/updating-network-parameters.html#updating-the-network-parameters].
To overcome this, we have created an Ansible playbook. The playbook will update the Networkmap service so that a networkparameter update is submitted. But the run flagDay command has to be manual, as it is not possible to login to each Network Participant and accept the new parameters. Also, whenever the parameter update happens, it will trigger a node shutdown. Hence, the run flagDay command must be executed when no transactions are happening in the network.

run flagDay command must be run after the network parameters update deadline is over (+10 minutes by default). And this command must be run during downtime as it will trigger Corda node restart.

	Prerequisites

	Deploy new Notary Service

	Run playbook

	Run parameter update

[bookmark: prerequisites]

Prerequisites

To add a new Notary organization, Corda Idman and Networkmap services should already be running. The public certificates and NetworkTrustStore from Idman and Networkmap should be available and specified in the configuration file.

NOTE: Addition of a new Notary organization has been tested on an existing network which is created by Bevel. Networks created using other methods may be suitable but this has not been tested by Bevel team.

[bookmark: deploy-new-notary-service]

Deploy new Notary Service

Deploy the additional notary/notaries as separate organizations by following the guidance on how to add new organizations here. A sample network.yaml for adding new notary orgs can be found here [https://github.com/hyperledger/bevel/tree/develop/platforms/r3-corda-ent/configuration/samples].

[bookmark: run-playbook]

Run Playbook

After the new notary is running, execute the playbook platforms/r3-corda-ent/configuration/add-notaries.yaml with the same configuration file as used in previous step.

ansible-playbook platforms/r3-corda-ent/configuration/add-notaries.yaml --extra-vars "@path-to-new-network.yaml"

[bookmark: run-parameter-update]

Run Parameter Update

The default networkparameters update timeout is 10 minutes, so wait for 10 minutes and then login to the networkmap ssh shell from the networkmap pod by running the commands below

#Login to networkmap pod
kubectl exec -it networkmap-0 -n <cenm-namespace> -c main -- bash
root@networkmap-0:/opt/corda# ssh nmap@localhost -p 2222 # say yes for hostkey message
Password authentication
Password:					# Enter password at prompt
	 _ __ __ __ ___
	 / | / /__ / /_/ |/ /___ _____
	 / |/ / _ \/ __/ /|_/ / __ `/ __ \
	 / /| / __/ /_/ / / / /_/ / /_/ /
	/_/ |_/___/__/_/ /_/__,_/ .___/
	 /_/
	Welcome to the Network Map interactive shell.
	Type 'help' to see what commands are available.
	
	Thu Dec 03 17:40:37 GMT 2020>>> view notaries				# to view current notaries
	
Run the following commands to execute flagday so that latest network parameters update is accepted
	
 Thu Dec 03 17:43:04 GMT 2020>>> view networkParametersUpdate # to check the current update (will be empty if no updates are in progress)
	
	Thu Dec 03 17:43:57 GMT 2020>>> run flagDay # to initiate flagDay which will apply the networkParameters update only if the deadline has passed
	
	# If you want to cancel the update, run following
Thu Dec 03 17:45:17 GMT 2020>>> run cancelUpdate

Ensure that the Corda Node users know that the network parameters have changed which will trigger node restart automatically.

 Configuration file specification: Hyperledger Besu

Configuration file specification: Hyperledger Besu

A network.yaml file is the base configuration file designed in Hyperledger Bevel for setting up a Hyperledger Besu DLT/Blockchain network. This file contains all the configurations related to the network that has to be deployed. Below shows its structure.
[image: ../_images/TopLevelClass-Besu.png]

Before setting up a Hyperledger Besu DLT/Blockchain network, this file needs to be updated with the required specifications.A sample configuration file is provided in the repo path:platforms/hyperledger-besu/configuration/samples/network-besu.yaml

A json-schema definition is provided in platforms/network-schema.json to assist with semantic validations and lints. You can use your favorite yaml lint plugin compatible with json-schema specification, like redhat.vscode-yaml for VSCode. You need to adjust the directive in template located in the first line based on your actual build directory:

yaml-language-server: $schema=../platforms/network-schema.json

The configurations are grouped in the following sections for better understanding.

	type

	version

	env

	docker

	config

	organizations

Here is the snapshot from the sample configuration file

[image: ../_images/NetworkYamlBesu.png]

The sections in the sample configuration file are

type defines the platform choice like corda/fabric/indy/quorum/besu, here in the example its besu.

version defines the version of platform being used. The current Hyperledger Besu version support is only for 21.10.6.

env section contains the environment type and additional (other than 8443) Ambassador port configuration. Vaule for proxy field under this section can be ‘ambassador’ as ‘haproxy’ has not been implemented for Besu.

The snapshot of the env section with example value is below

 env:
 type: "env-type" # tag for the environment. Important to run multiple flux on single cluster
 proxy: ambassador # value has to be 'ambassador' as 'haproxy' has not been implemented for Hyperledger Besu
 # These ports are enabled per cluster, so if you have multiple clusters you do not need so many ports
 # This sample uses a single cluster, so we have to open 4 ports for each Node. These ports are again specified for each organization below
 ambassadorPorts: # Any additional Ambassador ports can be given here, this is valid only if proxy='ambassador'
 portRange: # For a range of ports
 from: 15010
 to: 15043
 # ports: 15020,15021 # For specific ports
 loadBalancerSourceRanges: # (Optional) Default value is '0.0.0.0/0', this value can be changed to any other IP adres or list (comma-separated without spaces) of IP adresses, this is valid only if proxy='ambassador'
 retry_count: 50 # Retry count for the checks
 external_dns: enabled # Should be enabled if using external-dns for automatic route configuration

The fields under env section are

	Field
	Description

	type
	Environment type. Can be like dev/test/prod.

	proxy
	Choice of the Cluster Ingress controller. Currently supports 'ambassador' only as 'haproxy' has not been implemented for Hyperledger Besu

	ambassadorPorts
	Any additional Ambassador ports can be given here. This is only valid if proxy: ambassador. These ports are enabled per cluster, so if you have multiple clusters you do not need so many ports to be opened on Ambassador. Our sample uses a single cluster, so we have to open 4 ports for each Node. These ports are again specified in the organization section.

	loadBalancerSourceRanges
	(Optional) Restrict inbound access to a single or list of IP adresses for the public Ambassador ports to enhance Bevel network security. This is only valid if proxy: ambassador.

	retry_count
	Retry count for the checks. Use a high number if your cluster is slow.

	external_dns
	If the cluster has the external DNS service, this has to be set enabled so that the hosted zone is automatically updated.

docker section contains the credentials of the repository where all the required images are built and stored.

The snapshot of the docker section with example values is below

 # Docker registry details where images are stored. This will be used to create k8s secrets
 # Please ensure all required images are built and stored in this registry.
 # Do not check-in docker_password.
 docker:
 url: "docker_url"
 username: "docker_username"
 password: "docker_password"

The fields under docker section are

	Field
	Description

	url
	Docker registry url

	username
	Username required for login to docker registry

	password
	Password required for login to docker registry

config section contains the common configurations for the Hyperledger Besu network.

The snapshot of the config section with example values is below

 config:
 consensus: "ibft" # Options are "ibft", "ethash", "clique"
 ## Certificate subject for the root CA of the network.
 # This is for development usage only where we create self-signed certificates and the truststores are generated automatically.
 # Production systems should generate proper certificates and configure truststores accordingly.
 subject: "CN=DLT Root CA,OU=DLT,O=DLT,L=London,C=GB"
 transaction_manager: "tessera" # Transaction manager can be "tessera" or "orion"; 21.x.x features are same for both
 # This is the version of transaction_manager docker image that will be deployed
 # Supported versions #
 # orion: 1.6.0 (for besu 1.5.5)
 # orion/tessra: 21.7.3(for besu 21.10.6)
 tm_version: "21.7.3"
 # TLS can be True or False for the transaction manager
 tm_tls: True
 # Tls trust value
 tm_trust: "tofu" # Options are: "whitelist", "ca-or-tofu", "ca", "tofu"
 ## File location for saving the genesis file should be provided.
 genesis: "/home/user/bevel/build/besu_genesis" # Location where genesis file will be saved
 ## At least one Transaction Manager nodes public addresses should be provided.
 # - "https://node.test.besu.blockchaincloudpoc-develop.com:15022" for orion
 # - "https://node.test.besu.blockchaincloudpoc-develop.com" for tessera
 # The above domain name is formed by the (http or https)://(peer.name).(org.external_url_suffix):(ambassador tm_nodeport)
 tm_nodes:
 - "https://carrier.test.besu.blockchaincloudpoc-develop.com"

The fields under config are

	Field
	Description

	consensus
	Currently supports ibft, ethash and clique. Please update the remaining items according to the consensus chosen as not all values are valid for all the consensus.

	subject
	This is the subject of the root CA which will be created for the Hyperledger Besu network. The root CA is for development purposes only, production networks should already have the root certificates.

	transaction_manager
	Supports orion or tessera. Please update the remaining items according to the transaction_manager chosen as not all values are valid for the transaction_manager. From version 21.x.x orion features have merged into tessera.

	tm_version
	This is the version of transaction manager docker image that will be deployed. Supported versions: 1.6.0 for orion and 21.7.3 for tessera and orion.

	tm_tls
	Options are True and False. This enables TLS for the transaction manager and Besu node. False is not recommended for production.

	tm_trust
	Options are: whitelist, ca-or-tofu, ca, tofu. This is the trust relationships for the transaction managers. More details on modes here.

	genesis
	This is the path where genesis.json will be stored for a new network; for adding new node, the existing network's genesis.json should be available in json format in this file.

	tm_nodes
	This is an array. Provide at least one tessera/orion node details which will act as bootstrap for other tessera/orion nodes

The organizations section contains the specifications of each organization.

In the sample configuration example, we have four organization under the organizations section.

The snapshot of an organization field with sample values is below

 organizations:
 # Specification for the 1st organization. Each organization maps to a VPC and a separate k8s cluster
 - organization:
 name: carrier
 type: member
 # Provide the url suffix that will be added in DNS recordset. Must be different for different clusters
 external_url_suffix: test.besu.blockchaincloudpoc.com
 cloud_provider: aws # Options: aws, azure, gcp, minikube

Each organization under the organizations section has the following fields.

	Field
	Description

	name
	Name of the organization

	type
	Can be member for peer/member organization and validator for Validator organization.

	external_url_suffix
	Public url suffix for the cluster. This is used to discover Orion nodes between different clusters and to establish communication between nodes

	cloud_provider
	Cloud provider of the Kubernetes cluster for this organization. This field can be aws, azure, gcp or minikube

	aws
	Contains the AWS CLI credentials when the organization cluster is on AWS

	k8s
	Kubernetes cluster deployment variables.

	vault
	Contains Hashicorp Vault server address and root-token

	gitops
	Git Repo details which will be used by GitOps/Flux.

	services
	Contains list of services which could be validator/peer based on the type of organization

For the aws and k8s field the snapshot with sample values is below

 aws:
 access_key: "<aws_access_key>" # AWS Access key, only used when cloud_provider=aws
 secret_key: "<aws_secret>" # AWS Secret key, only used when cloud_provider=aws
 region: "<aws_region>" # AWS Region where cluster and EIPs are created
 # Kubernetes cluster deployment variables.
 k8s:
 context: "<cluster_context>"
 config_file: "<path_to_k8s_config_file>"

The aws field under each organization contains: (This will be ignored if cloud_provider is not aws)

	Field
	Description

	access_key
	AWS Access key

	secret_key
	AWS Secret key

	region
	The AWS region where K8s cluster and the EIPs reside

The k8s field under each organization contains

	Field
	Description

	context
	Context/Name of the cluster where the organization entities should be deployed

	config_file
	Path to the kubernetes cluster configuration file

For gitops fields the snapshot from the sample configuration file with the example values is below

 # Git Repo details which will be used by GitOps/Flux.
 gitops:
 git_protocol: "https" # Option for git over https or ssh
 git_url: "https://github.com/<username>/bevel.git" # Gitops htpps or ssh url for flux value files
 branch: "<branch_name>" # Git branch where release is being made
 release_dir: "platforms/hyperledger-besu/releases/dev" # Relative Path in the Git repo for flux sync per environment.
 chart_source: "platforms/hyperledger-besu/charts" # Relative Path where the Helm charts are stored in Git repo
 git_repo: "github.com/<username>/bevel.git" # without https://
 username: "<username>" # Git Service user who has rights to check-in in all branches
 password: "<password>" # Git Server user password/personal token (Optional for ssh; Required for https)
 email: "<git_email>" # Email to use in git config
 private_key: "<path to gitops private key>" # Path to private key (Optional for https; Required for ssh)

The gitops field under each organization contains

	Field
	Description

	git_protocol
	Option for git over https or ssh. Can be https or ssh

	git_url
	SSH or HTTPs url of the repository where flux should be synced

	branch
	Branch of the repository where the Helm Charts and value files are stored

	release_dir
	Relative path where flux should sync files

	chart_source
	Relative path where the helm charts are stored

	git_repo
	Gitops git repo URL https URL for git push like "github.com/hyperledger/bevel.git"

	username
	Username which has access rights to read/write on repository

	password
	Password of the user which has access rights to read/write on repository (Optional for ssh; Required for https)

	email
	Email of the user to be used in git config

	private_key
	Path to the private key file which has write-access to the git repo (Optional for https; Required for ssh)

The services field for each organization under organizations section of Hyperledger Besu contains list of services which could be peers or validators.

Each organization with type as member will have a peers service. The snapshot of peers service with example values is below

 peers:
 - peer:
 name: carrier
 subject: "O=Carrier,OU=Carrier,L=51.50/-0.13/London,C=GB" # This is the node subject. L=lat/long is mandatory for supplychain sample app
 geth_passphrase: "12345" # Passphrase to be used to generate geth account
 lock: true # (for future use) Sets Besu node to lock or unlock mode. Can be true or false
 p2p:
 port: 30303
 ambassador: 15010 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8545
 ambassador: 15011 #Port exposed on ambassador service (use one port per org if using single cluster)
 ws:
 port: 8546
 db:
 port: 3306 # Only applicable for tessra where mysql db is used
 tm_nodeport:
 port: 8888
 ambassador: 15013 # Port exposed on ambassador service (Transaction manager node port)
 tm_clientport:
 port: 8080

The fields under peer service are

	Field
	Description

	name
	Name of the peer

	subject
	This is the alternative identity of the peer node

	geth_passphrase
	This is the passphrase used to generate the geth account.

	lock
	(for future use). Sets Besu node to lock or unlock mode. Can be true or false

	p2p.port
	P2P port for Besu

	p2p.ambassador
	The P2P Port when exposed on ambassador service

	rpc.port
	RPC port for Besu

	rpc.ambassador
	The RPC Port when exposed on ambassador service

	ws.port
	Webservice port for Besu

	db.port
	Port for MySQL database which is only applicable for tessera

	tm_nodeport.port
	Port used by Transaction manager orion or tessera.

	tm_nodeport.ambassador
	The tm port when exposed on ambassador service.

	tm_clientport.port
	Client Port used by Transaction manager orion or tessera. This is the port where Besu nodes connect to their respective transaction manager.

The peer in an organization with type as member can be used to deploy the smarcontracts with additional field peer.smart_contract. The snapshot of peers service with example values is below

 peers:
 - peer:
 name: carrier
 subject: "O=Carrier,OU=Carrier,L=51.50/-0.13/London,C=GB" # This is the node subject. L=lat/long is mandatory for supplychain sample app
 geth_passphrase: "12345" # Passphrase to be used to generate geth account
 p2p:
 port: 30303
 ambassador: 15010 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8545
 ambassador: 15011 #Port exposed on ambassador service (use one port per org if using single cluster)
 ws:
 port: 8546
 tm_nodeport:
 port: 8888
 ambassador: 15013 # Port exposed on ambassador service (Transaction manager node port)
 tm_clientport:
 port: 8080
 geth_url: "http://manufacturerl.test.besu.blockchaincloudpoc.com:15011" # geth url of the node
 # smartcontract to be deployed only from one node (should not be repeated in other nodes)
 smart_contract:
 name: "General" # Name of the smart contract or Name of the main Smart contract Class
 deployjs_path: "examples/supplychain-app/besu/smartContracts" # location of folder containing deployment script from Bevel directory
 contract_path: "../../besu/smartContracts/contracts" # Path of the smart contract folder relative to deployjs_path
 iterations: 200 # Number of Iteration of execution to which the gas and the code is optimised
 entrypoint: "General.sol" # Main entrypoint solidity file of the contract
 private_for: "hPFajDXpdKzhgGdurWIrDxOimWFbcJOajaD3mJJVrxQ=,7aOvXjjkajr6gJm5mdHPhAuUANPXZhJmpYM5rDdS5nk=" # Orion Public keys for the privateFor

The additional fields under peer service are

	Field
	Description

	geth_url
	RPC url for the besu node

	smart_contract.name
	Name of the main smartcontract class

	smart_contract.deployjs_path
	location of folder containing deployment script relative to Bevel directory

	smart_contract.contract_path
	Path of the smart contract folder relative to deployjs_path

	smart_contract.iterations
	Number of Iteration of executions for which the gas and the code is optimised

	smart_contract.entrypoint
	Main entrypoint solidity file of the smart contract

	smart_contract.private_for
	Comma seperated string of orion or tessera Public keys for the privateFor

Each organization with type as validator will have a validator service. The snapshot of validator service with example values is below

 validators:
 - validator:
 name: validator1
 bootnode: true # true if the validator node is used also a bootnode for the network
 p2p:
 port: 30303
 ambassador: 15010 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8545
 ambassador: 15011 #Port exposed on ambassador service (use one port per org if using single cluster)
 ws:
 port: 8546

The fields under validator service are

	Field
	Description

	name
	Name of the validator

	bootnode
	true if the validator node is used also a bootnode for the network ***

	p2p.port
	P2P port for Besu

	p2p.ambassador
	The P2P Port when exposed on ambassador service

	rpc.port
	RPC port for Besu

	rpc.ambassador
	The RPC Port when exposed on ambassador service

	ws.port
	Webservice port for Besu

*** feature is in future scope

 Adding a new member organization in Besu

 [bookmark: adding-new-member-org-to-existing-network-in-besu]

Adding a new member organization in Besu

	Prerequisites

	Create Configuration File

	Run playbook

[bookmark: prerequisites]

Prerequisites

To add a new organization in Besu, an existing besu network should be running, enode information of all existing nodes present in the network should be available, genesis file should be available in base64 encoding and the information of orion nodes should be available. The new node account should be unlocked prior adding the new node to the existing besu network.

NOTE: Addition of a new organization has been tested on an existing network which is created by Bevel. Networks created using other methods may be suitable but this has not been tested by Bevel team.

NOTE: The guide is only for the addition of member organization in existing besu network.

[bookmark: create_config_file]

Create Configuration File

Refer this guide for details on editing the configuration file.

The network.yaml file should contain the specific network.organization details along with the enode information, genesis file in base64 encoding and orion transaction manager details

NOTE: Make sure that the genesis flie is provided in base64 encoding. Also, if you are adding node to the same cluster as of another node, make sure that you add the ambassador ports of the existing node present in the cluster to the network.yaml

For reference, sample network.yaml file looks like below for IBFT consensus (but always check the latest network-besu-new-memberorg.yaml at platforms/hyperledger-besu/configuration/samples):

This is a sample configuration file for Hyperledger Besu network which has 4 nodes.
All text values are case-sensitive
network:
 # Network level configuration specifies the attributes required for each organization
 # to join an existing network.
 type: besu
 version: 1.5.5 #this is the version of Besu docker image that will be deployed.

 #Environment section for Kubernetes setup
 env:
 type: "dev" # tag for the environment. Important to run multiple flux on single cluster
 proxy: ambassador # value has to be 'ambassador' as 'haproxy' has not been implemented for besu
 ## Any additional Ambassador ports can be given below, this is valid only if proxy='ambassador'
 # These ports are enabled per cluster, so if you have multiple clusters you do not need so many ports
 # This sample uses a single cluster, so we have to open 4 ports for each Node. These ports are again specified for each organization below
 ambassadorPorts:
 portRange: # For a range of ports
 from: 15010
 to: 15043
 # ports: 15020,15021 # For specific ports
 retry_count: 20 # Retry count for the checks on Kubernetes cluster
 external_dns: enabled # Should be enabled if using external-dns for automatic route configuration

 # Docker registry details where images are stored. This will be used to create k8s secrets
 # Please ensure all required images are built and stored in this registry.
 # Do not check-in docker_password.
 docker:
 url: "ghcr.io/hyperledger"
 username: "docker_username"
 password: "docker_password"

 # Following are the configurations for the common Besu network
 config:
 consensus: "ibft" # Options are "ibft", "ethash" and "clique".
 ## Certificate subject for the root CA of the network.
 # This is for development usage only where we create self-signed certificates and the truststores are generated automatically.
 # Production systems should generate proper certificates and configure truststores accordingly.
 subject: "CN=DLT Root CA,OU=DLT,O=DLT,L=London,C=GB"
 transaction_manager: "orion" # Transaction manager is "orion"
 # This is the version of "orion" docker image that will be deployed
 tm_version: "1.6.0"
 # TLS can be True or False for the orion tm
 tm_tls: True
 # Tls trust value
 tm_trust: "ca-or-tofu" # Options are: "whitelist", "ca-or-tofu", "ca", "tofu"
 ## File location where the base64 encoded genesis file is located.
 genesis: "/home/user/bevel/build/besu_genesis" # Location where genesis file will be fetched
 ## Transaction Manager nodes public addresses should be provided.
 # - "https://node.test.besu.blockchain-develop.com:15013"
 # The above domain name is formed by the (http or https)://(peer.name).(org.external_url_suffix):(ambassador orion node port)
 tm_nodes:
 - "https://carrier.test.besu.blockchaincloudpoc-develop.com:15013"
 - "https://manufacturer.test.besu.blockchaincloudpoc-develop.com:15023"
 - "https://store.test.besu.blockchaincloudpoc-develop.com:15033"
 - "https://warehouse.test.besu.blockchaincloudpoc-develop.com:15043"
 # Besu rpc public address list for existing validator and member nodes
 # - "http://node.test.besu.blockchaincloudpoc-develop.com:15011"
 # The above domain name is formed by the (http)://(peer.name).(org.external_url_suffix):(ambassador node rpc port)
 besu_nodes:
 - "http://validator.test.besu.blockchaincloudpoc-develop.com:15051"
 - "http://carrier.test.besu.blockchaincloudpoc-develop.com:15011"
 - "http://manufacturer.test.besu.blockchaincloudpoc-develop.com:15021"
 - "http://store.test.besu.blockchaincloudpoc-develop.com:15031"

 # Allows specification of one or many organizations that will be connecting to a network.
 organizations:
 # Specification for the 1st organization. Each organization should map to a VPC and a separate k8s cluster for production deployments
 - organization:
 name: neworg
 type: member
 # Provide the url suffix that will be added in DNS recordset. Must be different for different clusters
 # This is not used for Besu as Besu does not support DNS hostnames currently. Here for future use
 external_url_suffix: test.besu.blockchaincloudpoc-develop.com
 cloud_provider: aws # Options: aws, azure, gcp
 aws:
 access_key: "aws_access_key" # AWS Access key, only used when cloud_provider=aws
 secret_key: "aws_secret_key" # AWS Secret key, only used when cloud_provider=aws
 region: "aws_region" # AWS Region where cluster and EIPs are created
 # Kubernetes cluster deployment variables. The config file path and name has to be provided in case
 # the cluster has already been created.
 k8s:
 context: "cluster_context"
 config_file: "cluster_config"
 # Hashicorp Vault server address and root-token. Vault should be unsealed.
 # Do not check-in root_token
 vault:
 url: "vault_addr"
 root_token: "vault_root_token"
 secret_path: "secretsv2"
 # Git Repo details which will be used by GitOps/Flux.
 # Do not check-in git_access_token
 gitops:
 git_protocol: "https" # Option for git over https or ssh
 git_url: "https://github.com/<username>/bevel.git" # Gitops https or ssh url for flux value files
 branch: "develop" # Git branch where release is being made
 release_dir: "platforms/hyperledger-besu/releases/dev" # Relative Path in the Git repo for flux sync per environment.
 chart_source: "platforms/hyperledger-besu/charts" # Relative Path where the Helm charts are stored in Git repo
 git_repo: "github.com/<username>/bevel.git" # Gitops git repository URL for git push
 username: "git_username" # Git Service user who has rights to check-in in all branches
 password: "git_access_token" # Git Server user access token (Optional for ssh; Required for https)
 email: "git_email" # Email to use in git config
 private_key: "path_to_private_key" # Path to private key file which has write-access to the git repo (Optional for https; Required for ssh)
 # The participating nodes are named as peers
 services:
 peers:
 - peer:
 name: newOrg
 subject: "O=Neworg,OU=Neworg,L=51.50/-0.13/London,C=GB" # This is the node subject. L=lat/long is mandatory for supplychain sample app
 geth_passphrase: 12345 # Passphrase to be used to generate geth account
 lock: false # Sets Besu node to lock or unlock mode. Can be true or false
 p2p:
 port: 30303
 ambassador: 15020 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8545
 ambassador: 15021 #Port exposed on ambassador service (use one port per org if using single cluster)
 ws:
 port: 8546
 tm_nodeport:
 port: 15022 # Port exposed on ambassador service must be same
 ambassador: 15022
 tm_clientport:
 port: 8888

Three new sections are added to the network.yaml

	Field
	Description

	tm_nodes
	Existing network's transaction manager nodes' public addresses with nodeport.

	besu_nodes
	Existing network's besu nodes' public addresses with rpc port.

	genesis
	Path to existing network's genesis.json in base64.

[bookmark: run_network]

Run playbook

The site.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/site.yaml] playbook is used to add a new organization to the existing network. This can be done using the following command

ansible-playbook platforms/shared/configuration/site.yaml --extra-vars "@path-to-network.yaml" --extra-vars "add_new_org=True"

 Adding a new validator node in Besu

 [bookmark: adding-new-validator-node-to-existing-org-in-besu]

Adding a new validator node in Besu

	Prerequisites

	Create Configuration File

	Run playbook

[bookmark: prerequisites]

Prerequisites

To add a new node in Besu, an existing besu network should be running, enode information of all existing nodes present in the network should be available, genesis file should be available in base64 encoding and the information of orion nodes and existing validator nodes should be available. The new node account should be unlocked prior adding the new node to the existing besu network.

NOTE: Addition of a new validator node has been tested on an existing network which is created by Bevel. Networks created using other methods may be suitable but this has not been tested by Bevel team.

[bookmark: create_config_file]

Create Configuration File

Refer this guide for details on editing the configuration file.

The network.yaml file should contain the specific network.organization details along with the orion transaction manager node details and existing validator and member node details.

NOTE: Make sure that the genesis flie is provided in base64 encoding. Also, if you are adding node to the same cluster as of another node, make sure that you add the ambassador ports of the existing node present in the cluster to the network.yaml

For reference, sample network.yaml file looks like below for IBFT consensus (but always check the latest network-besu-new-validatornode.yaml at platforms/hyperledger-besu/configuration/samples):

This is a sample configuration file to add a new validator node to existing network.
This DOES NOT support proxy=none
All text values are case-sensitive
network:
Network level configuration specifies the attributes required for each organization to join an existing network.
 type: besu
 version: 21.10.6 #this is the version of Besu docker image that will be deployed.

#Environment section for Kubernetes setup
 env:
 type: "dev" # tag for the environment. Important to run multiple flux on single cluster
 proxy: ambassador # value has to be 'ambassador' as 'haproxy' has not been implemented for besu
 ## Any additional Ambassador ports can be given below, this is valid only if proxy='ambassador'
 # These ports are enabled per cluster, so if you have multiple clusters you do not need so many ports
 # This sample uses a single cluster, so we have to open 4 ports for each Node.
 # These ports are again specified for each organization below
 ambassadorPorts:
 portRange: # For a range of ports
 from: 15010
 to: 15043
 # ports: 15020,15021 # For specific ports
 retry_count: 20 # Retry count for the checks on Kubernetes cluster
 external_dns: enabled # Should be enabled if using external-dns for automatic route configuration

 # Docker registry details where images are stored. This will be used to create k8s secrets
 # Please ensure all required images are built and stored in this registry.
 # Do not check-in docker_password.
 docker:
 url: "ghcr.io/hyperledger"
 username: "docker_username"
 password: "docker_password"

 # Following are the configurations for the common Besu network
 config:
 consensus: "ibft" # Options are "ibft", "ethash" and "clique".
 ## Certificate subject for the root CA of the network.
 # This is for development usage only where we create self-signed certificates
 # and the truststores are generated automatically.
 # Production systems should generate proper certificates and configure truststores accordingly.
 subject: "CN=DLT Root CA,OU=DLT,O=DLT,L=London,C=GB"
 transaction_manager: "orion" # Transaction manager is "orion"
 # This is the version of "orion" docker image that will be deployed
 tm_version: "21.7.3"
 # TLS can be True or False for the orion tm
 tm_tls: True
 # Tls trust value
 tm_trust: "ca-or-tofu" # Options are: "whitelist", "ca-or-tofu", "ca", "tofu"
 ## File location where the base64 encoded genesis file is located.
 genesis: "/home/user/bevel/build/besu_genesis"
 ## Transaction Manager nodes public addresses should be provided.
 # - "https://node.test.besu.blockchain-develop.com:15013"
 # The above domain name is formed by the (http or https)://(peer.name).(org.external_url_suffix):(ambassador orion node port)
 tm_nodes:
 - "https://carrier.test.besu.blockchaincloudpoc-develop.com:15013"
 - "https://manufacturer.test.besu.blockchaincloudpoc-develop.com:15023"
 - "https://store.test.besu.blockchaincloudpoc-develop.com:15033"
 - "https://warehouse.test.besu.blockchaincloudpoc-develop.com:15043"
 # Besu rpc public address list for existing validator and member nodes
 # - "http://node.test.besu.blockchaincloudpoc-develop.com:15011"
 # The above domain name is formed by the (http)://(peer.name).(org.external_url_suffix):(ambassador node rpc port)
 besu_nodes:
 - "http://validator1.test.besu.blockchaincloudpoc-develop.com:15011"
 - "http://validator2.test.besu.blockchaincloudpoc-develop.com:15013"
 - "http://validator3.test.besu.blockchaincloudpoc-develop.com:15015"
 - "http://validator4.test.besu.blockchaincloudpoc-develop.com:15017"
 - "https://carrier.test.besu.blockchaincloudpoc-develop.com:15050"
 - "https://manufacturer.test.besu.blockchaincloudpoc-develop.com:15053"
 - "https://store.test.besu.blockchaincloudpoc-develop.com:15056"
 - "https://warehouse.test.besu.blockchaincloudpoc-develop.com:15059"

 # Allows specification of one or many organizations that will be connecting to a network.
 organizations:
 # Specification for the 1st organization. Each organization should map to a VPC and a separate k8s cluster for production deployments
 - organization:
 name: supplychain
 type: validator
 # Provide the url suffix that will be added in DNS recordset. Must be different for different clusters
 # This is not used for Besu as Besu does not support DNS hostnames currently. Here for future use
 external_url_suffix: test.besu.blockchaincloudpoc-develop.com
 cloud_provider: aws # Options: aws, azure, gcp
 aws:
 access_key: "aws_access_key" # AWS Access key, only used when cloud_provider=aws
 secret_key: "aws_secret_key" # AWS Secret key, only used when cloud_provider=aws
 region: "aws_region" # AWS Region where cluster and EIPs are created
 # Kubernetes cluster deployment variables. The config file path and name has to be provided in case
 # the cluster has already been created.
 k8s:
 context: "cluster_context"
 config_file: "cluster_config"
 # Hashicorp Vault server address and root-token. Vault should be unsealed.
 # Do not check-in root_token
 vault:
 url: "vault_addr"
 root_token: "vault_root_token"
 secret_path: "secretsv2"
 # Git Repo details which will be used by GitOps/Flux.
 # Do not check-in git_access_token
 gitops:
 git_protocol: "https" # Option for git over https or ssh
 git_url: "https://github.com/<username>/bevel.git" # Gitops https or ssh url for flux value files
 branch: "develop" # Git branch where release is being made
 release_dir: "platforms/hyperledger-besu/releases/dev" # Relative Path in the Git repo for flux sync per environment.
 chart_source: "platforms/hyperledger-besu/charts" # Relative Path where the Helm charts are stored in Git repo
 git_repo: "github.com/<username>/bevel.git" # Gitops git repository URL for git push
 username: "git_username" # Git Service user who has rights to check-in in all branches
 password: "git_access_token" # Git Server user access token (Optional for ssh; Required for https)
 email: "git_email" # Email to use in git config
 private_key: "path_to_private_key" # Path to private key file which has write-access to the git repo (Optional for https; Required for ssh)
 # As this is a validator org, it is hosting a few validators as services
 services:
 validators:
 - validator:
 name: validator1
 status: existing # needed to know which validator node exists
 bootnode: true # true if the validator node is used also a bootnode for the network
 p2p:
 port: 30303
 ambassador: 15020 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8545
 ambassador: 15021 #Port exposed on ambassador service (use one port per org if using single cluster)
 ws:
 port: 8546
 - validator:
 name: validator2
 status: existing # needed to know which validator node exists
 bootnode: true # true if the validator node is used also a bootnode for the network
 p2p:
 port: 30303
 ambassador: 15012 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8545
 ambassador: 15013 #Port exposed on ambassador service (use one port per org if using single cluster)
 ws:
 port: 8546
 - validator:
 name: validator3
 status: existing # needed to know which validator node exists
 bootnode: false # true if the validator node is used also a bootnode for the network
 p2p:
 port: 30303
 ambassador: 15014 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8545
 ambassador: 15015 #Port exposed on ambassador service (use one port per org if using single cluster)
 ws:
 port: 8546
 - validator:
 name: validator4
 status: existing # needed to know which validator node exists
 bootnode: false # true if the validator node is used also a bootnode for the network
 p2p:
 port: 30303
 ambassador: 15016 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8545
 ambassador: 15017 #Port exposed on ambassador service (use one port per org if using single cluster)
 ws:
 port: 8546
 - validator:
 name: validator5
 status: new # needed to know which validator node exists
 bootnode: false # true if the validator node is used also a bootnode for the network
 p2p:
 port: 30303
 ambassador: 15018 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8545
 ambassador: 15019 #Port exposed on ambassador service (use one port per org if using single cluster)
 ws:
 port: 8546

Three new sections are added to the network.yaml

	Field
	Description

	tm_nodes
	Existing network's transaction manager nodes' public addresses with nodeport.

	besu_nodes
	Existing network's besu nodes' public addresses with rpc port.

	genesis
	Path to existing network's genesis.json in base64.

[bookmark: run_network]

Run playbook

The add-validator.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-besu/configuration/add-validator.yaml] playbook is used to add a new validator node to an existing organization in a running network. This can be done using the following command

ansible-playbook platforms/hyperledger-besu/configuration/add-validator.yaml --extra-vars "@path-to-network.yaml"

 Adding a new validator organization in Besu

 [bookmark: adding-new-validator-org-to-existing-network-in-besu]

Adding a new validator organization in Besu

	Prerequisites

	Create Configuration File

	Run playbook

[bookmark: prerequisites]

Prerequisites

To add a new organization in Besu, an existing besu network should be running, enode information of all existing nodes present in the network should be available, genesis file should be available in base64 encoding and the information of orion nodes and existing validator nodes should be available. The new node account should be unlocked prior adding the new node to the existing besu network.

NOTE: Addition of a new organization has been tested on an existing network which is created by Bevel. Networks created using other methods may be suitable but this has not been tested by Bevel team.

[bookmark: create_config_file]

Create Configuration File

Refer this guide for details on editing the configuration file.

The network.yaml file should contain the specific network.organization details along with the orion transaction manager node details and existing validator and member node details.

NOTE: Make sure that the genesis flie is provided in base64 encoding. Also, if you are adding node to the same cluster as of another node, make sure that you add the ambassador ports of the existing node present in the cluster to the network.yaml

For reference, sample network.yaml file looks like below for IBFT consensus (but always check the latest network-besu-new-validatororg.yaml at platforms/hyperledger-besu/configuration/samples):

This is a sample configuration file to add a new validator organization to existing network.
This DOES NOT support proxy=none
All text values are case-sensitive
network:
Network level configuration specifies the attributes required for each organization to join an existing network.
 type: besu
 version: 21.10.6 #this is the version of Besu docker image that will be deployed.

#Environment section for Kubernetes setup
 env:
 type: "dev" # tag for the environment. Important to run multiple flux on single cluster
 proxy: ambassador # value has to be 'ambassador' as 'haproxy' has not been implemented for besu
 ## Any additional Ambassador ports can be given below, this is valid only if proxy='ambassador'
 # These ports are enabled per cluster, so if you have multiple clusters you do not need so many ports
 # This sample uses a single cluster, so we have to open 4 ports for each Node.
 # These ports are again specified for each organization below
 ambassadorPorts:
 portRange: # For a range of ports
 from: 15010
 to: 15043
 # ports: 15020,15021 # For specific ports
 retry_count: 20 # Retry count for the checks on Kubernetes cluster
 external_dns: enabled # Should be enabled if using external-dns for automatic route configuration

 # Docker registry details where images are stored. This will be used to create k8s secrets
 # Please ensure all required images are built and stored in this registry.
 # Do not check-in docker_password.
 docker:
 url: "ghcr.io/hyperledger"
 username: "docker_username"
 password: "docker_password"

 # Following are the configurations for the common Besu network
 config:
 consensus: "ibft" # Options are "ibft", "ethash" and "clique".
 ## Certificate subject for the root CA of the network.
 # This is for development usage only where we create self-signed certificates and the truststores are generated automatically.
 # Production systems should generate proper certificates and configure truststores accordingly.
 subject: "CN=DLT Root CA,OU=DLT,O=DLT,L=London,C=GB"
 transaction_manager: "orion" # Transaction manager is "orion"
 # This is the version of "orion" docker image that will be deployed
 tm_version: "21.7.3"
 # TLS can be True or False for the orion tm
 tm_tls: True
 # Tls trust value
 tm_trust: "ca-or-tofu" # Options are: "whitelist", "ca-or-tofu", "ca", "tofu"
 ## File location where the base64 encoded genesis file is located.
 genesis: "/home/user/bevel/build/besu_genesis"
 ## Transaction Manager nodes public addresses should be provided.
 # - "https://node.test.besu.blockchain-develop.com:15013"
 # The above domain name is formed by the (http or https)://(peer.name).(org.external_url_suffix):(ambassador orion node port)
 tm_nodes:
 - "https://carrier.test.besu.blockchaincloudpoc-develop.com:15013"
 - "https://manufacturer.test.besu.blockchaincloudpoc-develop.com:15023"
 - "https://store.test.besu.blockchaincloudpoc-develop.com:15033"
 - "https://warehouse.test.besu.blockchaincloudpoc-develop.com:15043"
 # Besu rpc public address list for existing validator and member nodes
 # - "http://node.test.besu.blockchaincloudpoc-develop.com:15011"
 # The above domain name is formed by the (http)://(peer.name).(org.external_url_suffix):(ambassador node rpc port)
 besu_nodes:
 - "http://validator1.test.besu.blockchaincloudpoc-develop.com:15011"
 - "http://validator2.test.besu.blockchaincloudpoc-develop.com:15013"
 - "http://validator3.test.besu.blockchaincloudpoc-develop.com:15015"
 - "http://validator4.test.besu.blockchaincloudpoc-develop.com:15017"
 - "https://carrier.test.besu.blockchaincloudpoc-develop.com:15050"
 - "https://manufacturer.test.besu.blockchaincloudpoc-develop.com:15053"
 - "https://store.test.besu.blockchaincloudpoc-develop.com:15056"
 - "https://warehouse.test.besu.blockchaincloudpoc-develop.com:15059"

 # Allows specification of one or many organizations that will be connecting to a network.
 organizations:
 # Specification for the 1st organization. Each organization should map to a VPC and a separate k8s cluster for production deployments
 - organization:
 name: supplychain
 type: validator
 # Provide the url suffix that will be added in DNS recordset. Must be different for different clusters
 # This is not used for Besu as Besu does not support DNS hostnames currently. Here for future use
 external_url_suffix: test.besu.blockchaincloudpoc-develop.com
 cloud_provider: aws # Options: aws, azure, gcp
 aws:
 access_key: "aws_access_key" # AWS Access key, only used when cloud_provider=aws
 secret_key: "aws_secret_key" # AWS Secret key, only used when cloud_provider=aws
 region: "aws_region" # AWS Region where cluster and EIPs are created
 # Kubernetes cluster deployment variables. The config file path and name has to be provided in case
 # the cluster has already been created.
 k8s:
 context: "cluster_context"
 config_file: "cluster_config"
 # Hashicorp Vault server address and root-token. Vault should be unsealed.
 # Do not check-in root_token
 vault:
 url: "vault_addr"
 root_token: "vault_root_token"
 secret_path: "secretsv2"
 # Git Repo details which will be used by GitOps/Flux.
 # Do not check-in git_access_token
 gitops:
 git_protocol: "https" # Option for git over https or ssh
 git_url: "https://github.com/<username>/bevel.git" # Gitops https or ssh url for flux value files
 branch: "develop" # Git branch where release is being made
 release_dir: "platforms/hyperledger-besu/releases/dev" # Relative Path in the Git repo for flux sync per environment.
 chart_source: "platforms/hyperledger-besu/charts" # Relative Path where the Helm charts are stored in Git repo
 git_repo: "github.com/<username>/bevel.git" # Gitops git repository URL for git push
 username: "git_username" # Git Service user who has rights to check-in in all branches
 password: "git_access_token" # Git Server user access token (Optional for ssh; Required for https)
 email: "git_email" # Email to use in git config
 private_key: "path_to_private_key" # Path to private key file which has write-access to the git repo (Optional for https; Required for ssh)
 # As this is a validator org, it is hosting a few validators as services
 services:
 validators:
 - validator:
 name: validator1
 status: existing # needed to know which validator node exists
 bootnode: true # true if the validator node is used also a bootnode for the network
 p2p:
 port: 30303
 ambassador: 15020 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8545
 ambassador: 15021 #Port exposed on ambassador service (use one port per org if using single cluster)
 ws:
 port: 8546
 - validator:
 name: validator2
 status: existing # needed to know which validator node exists
 bootnode: true # true if the validator node is used also a bootnode for the network
 p2p:
 port: 30303
 ambassador: 15012 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8545
 ambassador: 15013 #Port exposed on ambassador service (use one port per org if using single cluster)
 ws:
 port: 8546
 - validator:
 name: validator3
 status: existing # needed to know which validator node exists
 bootnode: false # true if the validator node is used also a bootnode for the network
 p2p:
 port: 30303
 ambassador: 15014 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8545
 ambassador: 15015 #Port exposed on ambassador service (use one port per org if using single cluster)
 ws:
 port: 8546
 - validator:
 name: validator4
 status: existing # needed to know which validator node exists
 bootnode: false # true if the validator node is used also a bootnode for the network
 p2p:
 port: 30303
 ambassador: 15016 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8545
 ambassador: 15017 #Port exposed on ambassador service (use one port per org if using single cluster)
 ws:
 port: 8546

 - organization:
 name: supplychain2
 type: validator
 # Provide the url suffix that will be added in DNS recordset. Must be different for different clusters
 external_url_suffix: test.besu.blockchaincloudpoc-develop.com

 cloud_provider: aws # Options: aws, azure, gcp
 aws:
 access_key: "aws_access_key" # AWS Access key, only used when cloud_provider=aws
 secret_key: "aws_secret_key" # AWS Secret key, only used when cloud_provider=aws
 region: "aws_region" # AWS Region where cluster and EIPs are created
 # Kubernetes cluster deployment variables. The config file path and name has to be provided in case
 # the cluster has already been created.
 k8s:
 context: "cluster_context"
 config_file: "cluster_config"
 # Hashicorp Vault server address and root-token. Vault should be unsealed.
 # Do not check-in root_token
 vault:
 url: "vault_addr"
 root_token: "vault_root_token"
 secret_path: "secretsv2"
 # Git Repo details which will be used by GitOps/Flux.
 # Do not check-in git_access_token
 gitops:
 git_protocol: "https" # Option for git over https or ssh
 git_url: "https://github.com/<username>/bevel.git" # Gitops https or ssh url for flux value files
 branch: "develop" # Git branch where release is being made
 release_dir: "platforms/hyperledger-besu/releases/dev" # Relative Path in the Git repo for flux sync per environment.
 chart_source: "platforms/hyperledger-besu/charts" # Relative Path where the Helm charts are stored in Git repo
 git_repo: "github.com/<username>/bevel.git" # Gitops git repository URL for git push
 username: "git_username" # Git Service user who has rights to check-in in all branches
 password: "git_access_token" # Git Server user password/token (Optional for ssh; Required for https)
 email: "git@email.com" # Email to use in git config
 private_key: "path_to_private_key" # Path to private key file which has write-access to the git repo (Optional for https; Required for ssh)
 # As this is a validator org, it is hosting a few validators as services
 services:
 validators:
 - validator:
 name: validator5
 status: new # needed to know which validator node exists
 bootnode: true # true if the validator node is used also a bootnode for the network
 p2p:
 port: 30303
 ambassador: 15026 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8545
 ambassador: 15027 #Port exposed on ambassador service (use one port per org if using single cluster)
 ws:
 port: 8546
 - validator:
 name: validator6
 status: new # needed to know which validator node exists
 bootnode: true # true if the validator node is used also a bootnode for the network
 p2p:
 port: 30303
 ambassador: 15028 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8545
 ambassador: 15029 #Port exposed on ambassador service (use one port per org if using single cluster)
 ws:
 port: 8546

Three new sections are added to the network.yaml

	Field
	Description

	tm_nodes
	Existing network's transaction manager nodes' public addresses with nodeports.

	besu_nodes
	Existing network's besu nodes' public addresses with rpc ports.

	genesis
	Path to existing network's genesis.json in base64.

[bookmark: run_network]

Run playbook

The add-validator.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-besu/configuration/add-validator.yaml] playbook is used to add a new validator organization to the existing network. This can be done using the following command

ansible-playbook platforms/hyperledger-besu/configuration/add-validator.yaml --extra-vars "@path-to-network.yaml" --extra-vars "add_new_org='true'"

 Configuration file specification: Indy

Configuration file specification: Indy

A network.yaml file is the base configuration file for setting up a Indy network. This file contains all the information related to the infrastructure and network specifications. Here is the structure of it.
[image: ../_images/TopLevelClass-Indy.png]

Before setting up a Indy network, this file needs to be updated with the required specifications.
A sample configuration file is provide in the repo path:platforms/hyperledger-indy/configuration/samples/network-indyv3.yaml

A json-schema definition is provided in platforms/network-schema.json to assist with semantic validations and lints. You can use your favorite yaml lint plugin compatible with json-schema specification, like redhat.vscode-yaml for VSCode. You need to adjust the directive in template located in the first line based on your actual build directory:

yaml-language-server: $schema=../platforms/network-schema.json

The configurations are grouped in the following sections for better understanding.

	type

	version

	env

	docker

	name

	genesis

	organizations

Here is the snapshot from the sample configuration file

[image: ../_images/NetworkYamlIndy.jpg]

The sections in the sample configuration file are

type defines the platform choice like corda/fabric/indy, here in example its Indy

version defines the version of platform being used, here in example the Indy version is 1.9.2.

env section contains the environment type and additional configuration. Value for proxy field under this section has to be ‘ambassador’ as ‘haproxy’ has not been implemented for Indy.

The snapshot of the env section with example values is below

 env:
 type: "env_type" # tag for the environment. Important to run multiple flux on single cluster
 proxy: ambassador # value has to be 'ambassador' as 'haproxy' has not been implemented for Indy
 # Must be different from all steward ambassador ports specified in the rest of this network yaml
 ambassadorPorts: # Any additional Ambassador ports can be given here, this is valid only if proxy='ambassador'
 # portRange: # For a range of ports
 # from: 15010
 # to: 15043
 ports: 15010,15023,15024,15033,15034,15043,15044 # Indy does not use a port range as it creates an NLB, and only necessary ports should be opened
 loadBalancerSourceRanges: # (Optional) Default value is '0.0.0.0/0', this value can be changed to any other IP adres or list (comma-separated without spaces) of IP adresses, this is valid only if proxy='ambassador'
 retry_count: 20 # Retry count for the checks
 external_dns: disabled # Should be enabled if using external-dns for automatic route configuration

The fields under env section are

	Field
	Description

	type
	Environment type. Can be like dev/test/prod.

	proxy
	Choice of the Cluster Ingress controller. Currently supports 'ambassador' only as 'haproxy' has not been implemented for Indy

	ambassadorPorts
	Provide additional Ambassador ports for Identity sample app. These ports must be different from all steward ambassador ports specified in the rest of this network yaml

	loadBalancerSourceRanges
	(Optional) Restrict inbound access to a single or list of IP adresses for the public Ambassador ports to enhance Bevel network security. This is only valid if proxy: ambassador.

	retry_count
	Retry count for the checks.

	external_dns
	If the cluster has the external DNS service, this has to be set enabled so that the hosted zone is automatically updated. Must be enabled for Identity sample app.

docker section contains the credentials of the repository where all the required images are built and stored.

The snapshot of the docker section with example values is below

 # Docker registry details where images are stored. This will be used to create k8s secrets
 # Please ensure all required images are built and stored in this registry.
 # Do not check-in docker_password.
 docker:
 url: "docker_url"
 username: "docker_username"
 password: "docker_password"

The fields under docker section are

	Field
	Description

	docker_url
	Docker registry url. Use private Docker registries for production network and for Identity sample app.

	username
	Username credential required for login

	password
	Password credential required for login

NOTE: Please follow these instructions to build and store the docker images before running the Ansible playbooks.

name is used as the Indy network name (has impact e.g. on paths where the Indy nodes look for crypto files on their local filesystem)

The snapshot of the genesis section with example values is below

 # Information about pool transaction genesis and domain transactions genesis
 genesis:
 state: absent
 pool: genesis/pool_transactions_genesis
 domain: domain/domain_transactions_genesis

The genesis section contains Information about pool transaction genesis and domain transactions genesis. genesis contains the following fields:

	Field
	Description

	state
	State is placeholder for future, when there will be option to join to existing cluter. Currently only "absent" is supported. That means, that genesis will be always generated

	pool
	Path to pool transaction genesis. Readme here.

	domain
	Path to domain transaction genesis. Readme here.

The organizations section allows specification of one or many organizations that will be connecting to a network. If an organization is also hosting the root of the network (e.g. membership service, etc), then these services should be listed in this section as well.

The snapshot of an organization field with sample values is below

 - organization:
 name: authority
 type: peer
 external_url_suffix: indy.blockchaincloudpoc.com # Provide the external dns suffix. Only used when Indy webserver/Clients are deployed.
 cloud_provider: aws # Values can be 'aws-baremetal', 'aws' or 'minikube'

Each organization under the organizations section has the following fields.

	Field
	Description

	name
	Name of the organization

	type
	Type of organization. This field can be peer/

	external_url_suffix
	Provide the external dns suffix. Only used when Indy webserver/Clients are deployed. external_dns should be enabled for this to work.

	cloud_provider
	Cloud provider of the Kubernetes cluster for this organization. This field can be aws_baremetal, aws or minikube.

	aws
	When the organization cluster is on AWS

	k8s
	Kubernetes cluster deployment variables.

	vault
	Contains Hashicorp Vault server address and root-token in the example

	gitops
	Git Repo details which will be used by GitOps/Flux.

	services
	Contains list of services which could be trustee/steward/endorser

For the aws and k8s field the snapshot with sample values is below

 aws:
 access_key: "aws_access_key" # AWS Access key
 secret_key: "aws_secret_key" # AWS Secret key
 encryption_key: "encryption_key_id" # AWS encryption key. If present, it's used as the KMS key id for K8S storage class encryption.
 zone: "availability_zone" # AWS availability zone
 region: "region" # AWS region

 publicIps: ["1.1.1.1","2.2.2.2"] # List of all public IP addresses of each availability zone

 # Kubernetes cluster deployment variables. The config file path has to be provided in case
 # the cluster has already been created.
 k8s:
 config_file: "cluster_config"
 context: "kubernetes-admin@kubernetes"

The aws field under each organisation contains: (This will be ignored if cloud_provider is not ‘aws’)

	Field
	Description

	access_key
	AWS Access key

	secret_key
	AWS Secret key

	encryption_key
	(optional) AWS encryption key. If present, it's used as the KMS key id for K8S storage class encryption.

	zone
	(optional) AWS availability zone. Applicable for Multi-AZ deployments

	region
	The AWS region where K8s cluster and EIPs reside

The publicIps field under each organisation contains:

	Field
	Description

	publicIps
	List of all public IP addresses of each availability zone from all organizations in the same k8s cluster

NOTE: Network.yaml file consists of more organizations, where each organization can be under different availability zone. It means, that each organization has different IP. The field publicIps holds list of all IPs of all organizations in the same cluster. This should be in JSON Array format like [”1.1.1.1”,”2.2.2.2”] and must contain different IP for each availability zone on the K8s cluster i.e. If the K8s cluster is in two AZ, then two IP addresses should be provided here.

The k8s field under each organisation contains

	Field
	Description

	context
	Context/Name of the cluster where the organization entities should be deployed

	config_file
	Path to the kubernetes cluster configuration file

For the vault field the snapshot with sample values is below

 # Hashicorp Vault server address and root-token. Vault should be unsealed.
 # Do not check-in root_token
 vault:
 url: "vault_addr"
 root_token: "vault_root_token"

The vault field under each organisation contains:

	Field
	Description

	url
	Vault server

	root_token
	Vault root token

For gitops fields the snapshot from the sample configuration file with the example values is below

 # Git Repo details which will be used by GitOps/Flux.
 # Do not check-in git_password
 gitops:
 git_protocol: "https" # Option for git over https or ssh
 git_url: "gitops_ssh_url" # Gitops https or ssh url for flux value files like "https://github.com/hyperledger/bevel.git"
 branch: "gitops_branch" # Git branch where release is being made
 release_dir: "gitops_release_dir" # Relative Path in the Git repo for flux sync per environment.
 chart_source: "gitops_charts" # Relative Path where the Helm charts are stored in Git repo
 git_repo: "gitops_repo_url" # Gitops git repository URL for git push like "github.com/hyperledger/bevel.git"
 username: "git_username" # Git Service user who has rights to check-in in all branches
 password: "git_password" # Git Server user password/ user token (Optional for ssh; Required for https)
 email: "git_email" # Email to use in git config
 private_key: "path_to_private_key" # Path to private key file which has write-access to the git repo (Optional for https; Required for ssh)

The gitops field under each organization contains

	Field
	Description

	git_protocol
	Option for git over https or ssh. Can be https or ssh

	git_url
	SSH or HTTPs url of the repository where flux should be synced

	branch
	Branch of the repository where the Helm Charts and value files are stored

	release_dir
	Relative path where flux should sync files

	chart_source
	Relative path where the helm charts are stored

	git_repo
	Gitops git repo URL https URL for git push like "github.com/hyperledger/bevel.git"

	username
	Username which has access rights to read/write on repository

	password
	Password of the user which has access rights to read/write on repository (Optional for ssh; Required for https)

	email
	Email of the user to be used in git config

	private_key
	Path to the private key file which has write-access to the git repo (Optional for https; Required for ssh)

The services field for each organization under organizations section of Indy contains list of services which could be trustee/steward/endorser

The snapshot of trustee service with example values is below

 services:
 trustees:
 - trustee:
 name: provider-trustee
 genesis: true
 server:
 port: 8000
 ambassador: 15010

The fields under trustee service are (find more about differences between trustee/steward/endorser here [https://readthedocs.org/projects/indy-node/downloads/pdf/latest/])

	Field
	Description

	name
	Name for the trustee service

	genesis
	If using domain and pool transaction genesis. true for current implementation

	server.port
	Applicable for Identity Sample App. This is the Indy webserver container port

	server.ambassador
	Applicable for Identity Sample App. This is the Indy webserver ambassador port which will be exposed publicly using the external URL.

The snapshot of steward service example values is below

 services:
 stewards:
 - steward:
 name: provider-steward-1
 type: VALIDATOR
 genesis: true
 publicIp: 3.221.78.194
 node:
 port: 9711
 targetPort: 9711
 ambassador: 9711 # Port for ambassador service
 client:
 port: 9712
 targetPort: 9712
 ambassador: 9712 # Port for ambassador service

The fields under steward service are

	Field
	Description

	name
	Name of the steward service

	type
	type VALIDATOR/OBSERVER for steward service. Currenty only VALIDATOR type is supported. Validators are trusted parties who validate identities and transactions in a distributed fashion. They validate identities by the private key of the identity validator. An outside party can also verify claims using the public key of the validator. Observer nodes may be required as the network scales. From the perspective of Indy clients, an observer node is a read-only copy of the Sovrin ledger performing three functions (Read requests, Hot stanbys, Push subscriptions)

	genesis
	If using domain and pool transaction genesis.

	publicIp
	Public Ip of service

	node.port
	HTTP node port number

	node.targetPort
	HTTP target node port number

	node.ambassador
	HTTP node port number of ambassador

	client.port
	HTTP client port number

	client.targetPort
	HTTP client target port number

	client.ambassador
	HTTP client port number of ambassador

The snapshot of endorser service with example values is below

 services:
 endorsers:
 - endorser:
 name: provider-endorser
 full_name: Some Decentralized Identity Mobile Services Provider
 avatar: https://provider.com/avatar.png
 # public endpoint will be {{ endorser.name}}.{{ external_url_suffix}}:{{endorser.server.httpPort}}
 # E.g. In this sample https://provider-endorser.indy.blockchaincloudpoc.com:15020/
 # For minikube: http://<minikubeip>>:15020
 server:
 httpPort: 15020
 apiPort: 15030

The fields under endorser service are

	Field
	Description

	name
	Name of the endorser service

	full_name
	Full name of endorser service

	avatar
	Link to avatar. Not used now.

	server.httpPort
	Applicable for Identity Sample App. This is the Endorser Agent's Web port which will be exposed publicly using the external URL.

	server.apiPort
	Applicable for Identity Sample App. This is the Endorser Agent's API/Swagger port which will be exposed publicly using the external URL.

 Adding a new validator organization in Indy

 [bookmark: adding-new-org-to-existing-network-in-indy]

Adding a new validator organization in Indy

	Prerequisites

	Add a new validator organization to a Bevel managed network

	Create Configuration File

	Run playbook

	Add a new validator organization to network managed outside of Bevel

	Create Configuration File

	Run playbook up-to genesis config map creation

	Provide public STEWARD identity crypto to network manager

	Run rest of playbook

[bookmark: prerequisites]

Prerequisites

To add a new organization in Indy, an existing Indy network should be running, pool and domain genesis files should be available.

NOTE: The guide is only for the addition of VALIDATOR Node in existing Indy network.

[bookmark: add-new-org-bevel]

Add a new validator organization to a Bevel managed network

[bookmark: create-configuration-file-bevel]

Create Configuration File

Refer this guide for details on editing the configuration file.

The network.yaml file should contain the specific network.organization details.

NOTE: If you are adding node to the same cluster as of another node, make sure that you add the ambassador ports of the existing node present in the cluster to the network.yaml

For reference, sample network.yaml file looks like below (but always check the latest network-indy-newnode-to-bevel-network.yaml at platforms/hyperledger-indy/configuration/samples):

This is a sample configuration file for hyperledger indy which can be reused for adding of new org with 1 validator node to a fully Bevel managed network.
It has 2 organizations:
1. existing organization "university" with 1 trustee, 4 stewards and 1 endorser
2. new organization "bank" with 1 trustee, 1 steward and 1 endorser

network:
 # Network level configuration specifies the attributes required for each organization
 # to join an existing network.
 type: indy
 version: 1.11.0 # Supported versions 1.11.0 and 1.12.1

 #Environment section for Kubernetes setup
 env:
 type: indy # tag for the environment. Important to run multiple flux on single cluster
 proxy: ambassador # value has to be 'ambassador' as 'haproxy' has not been implemented for Indy
 ambassadorPorts:
 portRange: # For a range of ports
 from: 9711
 to: 9720
 loadBalancerSourceRanges: # (Optional) Default value is '0.0.0.0/0', this value can be changed to any other IP adres or list (comma-separated without spaces) of IP adresses, this is valid only if proxy='ambassador'
 retry_count: 40 # Retry count for the checks
 external_dns: enabled # Should be enabled if using external-dns for automatic route configuration

 # Docker registry details where images are stored. This will be used to create k8s secrets
 # Please ensure all required images are built and stored in this registry.
 # Do not check-in docker_password.
 docker:
 url: "ghcr.io/hyperledger"
 username: "docker_username"
 password: "docker_password"

 # It's used as the Indy network name (has impact e.g. on paths where the Indy nodes look for crypto files on their local filesystem)
 name: bevel

 # Information about pool transaction genesis and domain transactions genesis
 # All the fields below in the genesis section are MANDATORY
 genesis:
 state: present # must be present when add_new_org is true
 pool: /path/to/pool_transactions_genesis # path where pool_transactions_genesis from existing network has been stored locally
 domain: /path/to/domain_transactions_genesis # path where domain_transactions_genesis from existing has been stored locally

 # Allows specification of one or many organizations that will be connecting to a network.
 organizations:
 - organization:
 name: university
 type: peer
 org_status: existing # Status of the organization for the existing network, can be new / existing
 cloud_provider: aws
 external_url_suffix: indy.blockchaincloudpoc.com # Provide the external dns suffix. Only used when Indy webserver/Clients are deployed.

 aws:
 access_key: "aws_access_key" # AWS Access key
 secret_key: "aws_secret_key" # AWS Secret key
 encryption_key: "encryption_key_id" # AWS encryption key. If present, it's used as the KMS key id for K8S storage class encryption.
 zone: "availability_zone" # AWS availability zone
 region: "region" # AWS region

 publicIps: ["3.221.78.194"] # List of all public IP addresses of each availability zone from all organizations in the same k8s cluster

 # Kubernetes cluster deployment variables. The config file path has to be provided in case
 # the cluster has already been created.
 k8s:
 config_file: "/path/to/cluster_config"
 context: "kubernetes-admin@kubernetes"

 # Hashicorp Vault server address and root-token. Vault should be unsealed.
 # Do not check-in root_token
 vault:
 url: "vault_addr"
 root_token: "vault_root_token"

 # Git Repo details which will be used by GitOps/Flux.
 # Do not check-in git_access_token
 gitops:
 git_protocol: "https" # Option for git over https or ssh
 git_url: "https://github.com/<username>/bevel.git" # Gitops https or ssh url for flux value files
 branch: "develop" # Git branch where release is being made
 release_dir: "platforms/hyperledger-indy/releases/dev" # Relative Path in the Git repo for flux sync per environment.
 chart_source: "platforms/hyperledger-indy/charts" # Relative Path where the Helm charts are stored in Git repo
 git_repo: "github.com/<username>/bevel.git" # Gitops git repository URL for git push
 username: "git_username" # Git Service user who has rights to check-in in all branches
 password: "git_access_token" # Git Server user password
 email: "git@email.com" # Email to use in git config
 private_key: "path_to_private_key" # Path to private key file which has write-access to the git repo (Optional for https; Required for ssh)

 # Services maps to the pods that will be deployed on the k8s cluster
 # This sample has trustee, 2 stewards and endoorser
 services:
 trustees:
 - trustee:
 name: university-trustee
 genesis: true
 stewards:
 - steward:
 name: university-steward-1
 type: VALIDATOR
 genesis: true
 publicIp: 3.221.78.194 # IP address of current organization in current availability zone
 node:
 port: 9713
 targetPort: 9713
 ambassador: 9713 # Port for ambassador service
 client:
 port: 9714
 targetPort: 9714
 ambassador: 9714 # Port for ambassador service
 - steward:
 name: university-steward-2
 type: VALIDATOR
 genesis: true
 publicIp: 3.221.78.194 # IP address of current organization in current availability zone
 node:
 port: 9715
 targetPort: 9715
 ambassador: 9715 # Port for ambassador service
 client:
 port: 9716
 targetPort: 9716
 ambassador: 9716 # Port for ambassador service
 - steward:
 name: university-steward-3
 type: VALIDATOR
 genesis: true
 publicIp: 3.221.78.194 # IP address of current organization in current availability zone
 node:
 port: 9717
 targetPort: 9717
 ambassador: 9717 # Port for ambassador service
 client:
 port: 9718
 targetPort: 9718
 ambassador: 9718 # Port for ambassador service
 - steward:
 name: university-steward-4
 type: VALIDATOR
 genesis: true
 publicIp: 3.221.78.194 # IP address of current organization in current availability zone
 node:
 port: 9719
 targetPort: 9719
 ambassador: 9719 # Port for ambassador service
 client:
 port: 9720
 targetPort: 9720
 ambassador: 9720 # Port for ambassador service
 endorsers:
 - endorser:
 name: university-endorser
 full_name: Some Decentralized Identity Mobile Services Partner
 avatar: http://university.com/avatar.png
 # public endpoint will be {{ endorser.name}}.{{ external_url_suffix}}:{{endorser.server.httpPort}}
 # Eg. In this sample http://university-endorser.indy.blockchaincloudpoc.com:15033/
 # For minikube: http://<minikubeip>>:15033
 server:
 httpPort: 15033
 apiPort: 15034
 webhookPort: 15035
 - organization:
 name: bank
 type: peer
 org_status: new # Status of the organization for the existing network, can be new / existing
 cloud_provider: aws
 external_url_suffix: indy.blockchaincloudpoc.com # Provide the external dns suffix. Only used when Indy webserver/Clients are deployed.

 aws:
 access_key: "aws_access_key" # AWS Access key
 secret_key: "aws_secret_key" # AWS Secret key
 encryption_key: "encryption_key_id" # AWS encryption key. If present, it's used as the KMS key id for K8S storage class encryption.
 zone: "availability_zone" # AWS availability zone
 region: "region" # AWS region

 publicIps: ["3.221.78.194"] # List of all public IP addresses of each availability zone from all organizations in the same k8s cluster # List of all public IP addresses of each availability zone

 # Kubernetes cluster deployment variables. The config file path has to be provided in case
 # the cluster has already been created.
 k8s:
 config_file: "/path/to/cluster_config"
 context: "kubernetes-admin@kubernetes"

 # Hashicorp Vault server address and root-token. Vault should be unsealed.
 # Do not check-in root_token
 vault:
 url: "vault_addr"
 root_token: "vault_root_token"

 # Git Repo details which will be used by GitOps/Flux.
 # Do not check-in git_access_token
 gitops:
 git_protocol: "https" # Option for git over https or ssh
 git_url: "https://github.com/<username>/bevel.git" # Gitops https or ssh url for flux value files
 branch: "develop" # Git branch where release is being made
 release_dir: "platforms/hyperledger-indy/releases/dev" # Relative Path in the Git repo for flux sync per environment.
 chart_source: "platforms/hyperledger-indy/charts" # Relative Path where the Helm charts are stored in Git repo
 git_repo: "github.com/<username>/bevel.git" # Gitops git repository URL for git push
 username: "git_username" # Git Service user who has rights to check-in in all branches
 password: "git_access_token" # Git Server user password
 email: "git@email.com" # Email to use in git config
 private_key: "path_to_private_key" # Path to private key file which has write-access to the git repo (Optional for https; Required for ssh)

 # Services maps to the pods that will be deployed on the k8s cluster
 # This sample has trustee, 2 stewards and endoorser
 services:
 trustees:
 - trustee:
 name: bank-trustee
 genesis: true
 stewards:
 - steward:
 name: bank-steward-1
 type: VALIDATOR
 genesis: true
 publicIp: 3.221.78.194 # IP address of current organization in current availability zone
 node:
 port: 9711
 targetPort: 9711
 ambassador: 9711 # Port for ambassador service
 client:
 port: 9712
 targetPort: 9712
 ambassador: 9712 # Port for ambassador service
 endorsers:
 - endorser:
 name: bank-endorser
 full_name: Some Decentralized Identity Mobile Services Provider
 avatar: http://bank.com/avatar.png

Following items must be added/updated to the network.yaml used to add new organizations

	Field
	Description

	genesis.state
	Must be present for add org

	genesis.pool
	Path to Pool Genesis file of the existing Indy network.

	genesis.domain
	Path to Domain Genesis file of the existing Indy network.

Also, ensure that organization.org_status is set to existing for existing orgs and new for the new org.

[bookmark: run-playbook-bevel]

Run playbook

The add-new-organization.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/add-new-organization.yaml] playbook is used to add a new organization to the existing Bevel managed network by running the following command

ansible-playbook platforms/shared/configuration/add-new-organization.yaml -e "@path-to-network.yaml"

[bookmark: add-new-org-non-bevel]

Add a new validator organization to network managed outside of Bevel

[bookmark: create-configuration-file-non-bevel]

Create Configuration File

Refer this guide for details on editing the configuration file.

The network.yaml file should contain the specific network.organization details.

For reference, sample network.yaml file looks like below (but always check the latest network-indy-newnode-to-non-bevel-network.yaml at platforms/hyperledger-indy/configuration/samples):

This is a sample configuration file for hyperledger indy which can be reused for adding of new org with 1 validator node to an existing non-Bevel managed network.
It has 1 organization:
- new organization "bank" with 1 steward and 1 endorser

network:
 # Network level configuration specifies the attributes required for each organization
 # to join an existing network.
 type: indy
 version: 1.11.0 # Supported versions 1.11.0 and 1.12.1

 #Environment section for Kubernetes setup
 env:
 type: indy # tag for the environment. Important to run multiple flux on single cluster
 proxy: ambassador # value has to be 'ambassador' as 'haproxy' has not been implemented for Indy
 ambassadorPorts:
 portRange: # For a range of ports
 from: 9711
 to: 9712
 loadBalancerSourceRanges: # (Optional) Default value is '0.0.0.0/0', this value can be changed to any other IP adres or list (comma-separated without spaces) of IP adresses, this is valid only if proxy='ambassador'
 retry_count: 40 # Retry count for the checks
 external_dns: enabled # Should be enabled if using external-dns for automatic route configuration

 # Docker registry details where images are stored. This will be used to create k8s secrets
 # Please ensure all required images are built and stored in this registry.
 # Do not check-in docker_password.
 docker:
 url: "ghcr.io/hyperledger"
 username: "docker_username"
 password: "docker_password"

 # It's used as the Indy network name (has impact e.g. on paths where the Indy nodes look for crypto files on their local filesystem)
 name: bevel

 # Information about pool transaction genesis and domain transactions genesis
 # All the fields below in the genesis section are MANDATORY
 genesis:
 state: present # must be present when add_new_org is true
 pool: /path/to/pool_transactions_genesis # path where pool_transactions_genesis from existing network has been stored locally
 domain: /path/to/domain_transactions_genesis # path where domain_transactions_genesis from existing has been stored locally

 # Allows specification of one or many organizations that will be connecting to a network.
 organizations:
 - organization:
 name: bank
 type: peer
 org_status: new # Status of the organization for the existing network, can be new / existing
 cloud_provider: aws
 external_url_suffix: indy.blockchaincloudpoc.com # Provide the external dns suffix. Only used when Indy webserver/Clients are deployed.

 aws:
 access_key: "aws_access_key" # AWS Access key
 secret_key: "aws_secret_key" # AWS Secret key
 encryption_key: "encryption_key_id" # AWS encryption key. If present, it's used as the KMS key id for K8S storage class encryption.
 zone: "availability_zone" # AWS availability zone
 region: "region" # AWS region

 publicIps: ["3.221.78.194"] # List of all public IP addresses of each availability zone from all organizations in the same k8s cluster # List of all public IP addresses of each availability zone

 # Kubernetes cluster deployment variables. The config file path has to be provided in case
 # the cluster has already been created.
 k8s:
 config_file: "/path/to/cluster_config"
 context: "kubernetes-admin@kubernetes"

 # Hashicorp Vault server address and root-token. Vault should be unsealed.
 # Do not check-in root_token
 vault:
 url: "vault_addr"
 root_token: "vault_root_token"

 # Git Repo details which will be used by GitOps/Flux.
 # Do not check-in git_access_token
 gitops:
 git_protocol: "https" # Option for git over https or ssh
 git_url: "https://github.com/<username>/bevel.git" # Gitops https or ssh url for flux value files
 branch: "develop" # Git branch where release is being made
 release_dir: "platforms/hyperledger-indy/releases/dev" # Relative Path in the Git repo for flux sync per environment.
 chart_source: "platforms/hyperledger-indy/charts" # Relative Path where the Helm charts are stored in Git repo
 git_repo: "github.com/<username>/bevel.git" # Gitops git repository URL for git push
 username: "git_username" # Git Service user who has rights to check-in in all branches
 password: "git_access_token" # Git Server user password
 email: "git@email.com" # Email to use in git config
 private_key: "path_to_private_key" # Path to private key file which has write-access to the git repo (Optional for https; Required for ssh)

 # Services maps to the pods that will be deployed on the k8s cluster
 # This sample has trustee, 2 stewards and endoorser
 services:
 stewards:
 - steward:
 name: bank-steward-1
 type: VALIDATOR
 genesis: true
 publicIp: 3.221.78.194 # IP address of current organization in current availability zone
 node:
 port: 9711
 targetPort: 9711
 ambassador: 9711 # Port for ambassador service
 client:
 port: 9712
 targetPort: 9712
 ambassador: 9712 # Port for ambassador service
 endorsers:
 - endorser:
 name: bank-endorser
 full_name: Some Decentralized Identity Mobile Services Provider
 avatar: http://bank.com/avatar.png

Following items must be added/updated to the network.yaml used to add new organizations

	Field
	Description

	genesis.state
	Must be present for add org

	genesis.pool
	Path to Pool Genesis file of the existing Indy network.

	genesis.domain
	Path to Domain Genesis file of the existing Indy network.

Also, ensure that organization.org_status is set to new for the new org.

[bookmark: run-playbook-up-to-config-map-non-bevel]

Run playbook up-to genesis config map creation

The add-new-organization.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/add-new-organization.yaml] playbook is used with additional parameters specifying that a TRUSTEE identity is not present in the network configuration file and also NYMs (identities) of the new organization are not yet present on the domain ledger. This is achieved by running the following command

ansible-playbook platforms/shared/configuration/add-new-organization.yaml -e "@path-to-network.yaml" \
 -e "add_new_org_network_trustee_present=false" \
 -e "add_new_org_new_nyms_on_ledger_present=false"

[bookmark: provide-public-crypto-non-bevel]

Provide public STEWARD identity crypto to network manager

Share the following public crypto with an organization admin (TRUSTEE identity owner), check full Vault structure here.

	Path
	Key (for Vault)
	Type

	/org_name_lowercase/stewards/steward_name_lowercase/identity/public/
	did
	String

	/org_name_lowercase/stewards/steward_name_lowercase/node/public/verif_keys/
	verification-key
	Verification Key

Please wait for the organization admin to confirm that the identity has been added to the domain ledger with a STEWARD role until you proceed with the final step.

[bookmark: run-rest-playbook-non-bevel]

Run rest of playbook

The add-new-organization.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/add-new-organization.yaml] playbook is used with additional parameters specifying that a TRUSTEE identity is not present in the network configuration file and also NYMs (identities) of the new organization are already present on the domain ledger. This is achieved by running the following command

ansible-playbook platforms/shared/configuration/add-new-organization.yaml -e "@path-to-network.yaml" \
 -e "add_new_org_network_trustee_present=false" \
 -e "add_new_org_new_nyms_on_ledger_present=true"

 Configuration file specification: Quorum

Configuration file specification: Quorum

A network.yaml file is the base configuration file designed in Hyperledger Bevel for setting up a Quorum DLT network. This file contains all the configurations related to the network that has to be deployed. Below shows its structure.
[image: ../_images/TopLevelClass-Quorum.png]

Before setting up a Quorum DLT/Blockchain network, this file needs to be updated with the required specifications.

A sample configuration file is provided in the repo path:platforms/quorum/configuration/samples/network-quorum.yaml

A json-schema definition is provided in platforms/network-schema.json to assist with semantic validations and lints. You can use your favorite yaml lint plugin compatible with json-schema specification, like redhat.vscode-yaml for VSCode. You need to adjust the directive in template located in the first line based on your actual build directory:

yaml-language-server: $schema=../platforms/network-schema.json

The configurations are grouped in the following sections for better understanding.

	type

	version

	env

	docker

	config

	organizations

Here is the snapshot from the sample configuration file

[image: ../_images/NetworkYamlQuorum.png]

The sections in the sample configuration file are

type defines the platform choice like corda/fabric/indy/quorum, here in the example its quorum.

version defines the version of platform being used. The current Quorum version support is only for 21.4.2

NOTE: Use Quorum Version 21.4.2 if you are deploying Supplychain smartcontracts from examples.

env section contains the environment type and additional (other than 8443) Ambassador port configuration. Vaule for proxy field under this section can be ‘ambassador’ or ‘haproxy’

The snapshot of the env section with example value is below

 env:
 type: "env-type" # tag for the environment. Important to run multiple flux on single cluster
 proxy: ambassador # value has to be 'ambassador' as 'haproxy' has not been implemented for Quorum
 # These ports are enabled per cluster, so if you have multiple clusters you do not need so many ports
 # This sample uses a single cluster, so we have to open 4 ports for each Node. These ports are again specified for each organization below
 ambassadorPorts: # Any additional Ambassador ports can be given here, this is valid only if proxy='ambassador'
 portRange: # For a range of ports
 from: 15010
 to: 15043
 # ports: 15020,15021 # For specific ports
 loadBalancerSourceRanges: 0.0.0.0/0 # Default value is '0.0.0.0/0', this value can be changed to any other IP adres or list (comma-separated without spaces) of IP adresses, this is valid only if proxy='ambassador'
 retry_count: 50 # Retry count for the checks
 external_dns: enabled # Should be enabled if using external-dns for automatic route configuration

The fields under env section are

	Field
	Description

	type
	Environment type. Can be like dev/test/prod.

	proxy
	Choice of the Cluster Ingress controller. Currently supports 'ambassador' only as 'haproxy' has not been implemented for Quorum

	ambassadorPorts
	Any additional Ambassador ports can be given here. This is only valid if proxy: ambassador. These ports are enabled per cluster, so if you have multiple clusters you do not need so many ports to be opened on Ambassador. Our sample uses a single cluster, so we have to open 4 ports for each Node. These ports are again specified in the organization section.

	loadBalancerSourceRanges
	Restrict inbound access to a single or list of IP adresses for the public Ambassador ports to enhance Bevel network security. This is only valid if proxy: ambassador.

	retry_count
	Retry count for the checks. Use a high number if your cluster is slow.

	external_dns
	If the cluster has the external DNS service, this has to be set enabled so that the hosted zone is automatically updated.

docker section contains the credentials of the repository where all the required images are built and stored.

The snapshot of the docker section with example values is below

 # Docker registry details where images are stored. This will be used to create k8s secrets
 # Please ensure all required images are built and stored in this registry.
 # Do not check-in docker_password.
 docker:
 url: "docker_url"
 username: "docker_username"
 password: "docker_password"

The fields under docker section are

	Field
	Description

	url
	Docker registry url

	username
	Username required for login to docker registry

	password
	Password required for login to docker registry

config section contains the common configurations for the Quorum network.

The snapshot of the config section with example values is below

 config:
 consensus: "raft" # Options are "raft" and "ibft"
 ## Certificate subject for the root CA of the network.
 # This is for development usage only where we create self-signed certificates and the truststores are generated automatically.
 # Production systems should generate proper certificates and configure truststores accordingly.
 subject: "CN=DLT Root CA,OU=DLT,O=DLT,L=London,C=GB"
 transaction_manager: "tessera" # Options are "tessera" and "constellation"
 # This is the version of "tessera" or "constellation" docker image that will be deployed
 # Supported versions #
 # constellation: 0.3.2 (For all versions of quorum)
 tm_version: "21.7.3" # This is the version of "tessera" and "constellation" docker image that will be deployed
 tm_tls: "strict" # Options are "strict" and "off"
 tm_trust: "tofu" # Options are: "whitelist", "ca-or-tofu", "ca", "tofu"
 ## Transaction Manager nodes public addresses should be provided.
 # For "tessera", all participating nodes should be provided
 # For "constellation", only one is bootnode should be provided
 #
 # For constellation, use following. This will be the bootnode for all nodes
 # - "http://carrier.test.quorum.blockchaincloudpoc.com:15012/" #NOTE the end / is necessary and should not be missed
 # The above domain name is formed by the http://(peer.name).(org.external_url_suffix):(ambassador constellation port)/
 # In the example (for tessera) below, the domain name is formed by the https://(peer.name).(org.external_url_suffix):(ambassador default port)
 tm_nodes:
 - "https://carrier.test.quorum.blockchaincloudpoc.com:8443"
 - "https://manufacturer.test.quorum.blockchaincloudpoc.com:8443"
 - "https://store.test.quorum.blockchaincloudpoc.com:8443"
 - "https://warehouse.test.quorum.blockchaincloudpoc.com:8443"
 staticnodes: "/home/user/bevel/build/quorum_staticnodes" # Location where staticnodes will be saved
 genesis: "/home/user/bevel/build/quorum_genesis" # Location where genesis file will be saved
 # NOTE for the above paths, the directories should exist
 ##### Following keys are only used when adding new Node(s) to existing network and should NOT be used to create new network.
 bootnode:
 #name of the bootnode that matches one from existing node
 name: carrier
 #ambassador url of the bootnode
 url: carrier.test.quorum.blockchaincloudpoc.com
 #rpc port of the bootnode
 rpcport: 15011
 #id of the bootnode
 nodeid: 1

The fields under config are

	Field
	Description

	consensus
	Currently supports raft or ibft. Please update the remaining items according to the consensus chosen as not all values are valid for both the consensus.

	subject
	This is the subject of the root CA which will be created for the Quorum network. The root CA is for development purposes only, production networks should already have the root certificates.

	transaction_manager
	Options are tessera and constellation. Please update the remaining items according to the transaction_manager chosen as not all values are valid for both the transaction_manager.

	tm_version
	This is the version of tessera and constellation docker image that will be deployed. Supported versions: 21.7.3 for tessera and 0.3.2 for constellation.

	tm_tls
	Options are strict and off. This enables TLS for the transaction managers, and is not related to the actual Quorum network. off is not recommended for production.

	tm_trust
	Options are: whitelist, ca-or-tofu, ca, tofu. This is the trust relationships for the transaction managers. More details for tessera and for consellation.

	tm_nodes
	The Transaction Manager nodes public addresses should be provided. For tessera, all participating nodes should be provided, for constellation, only one bootnode should be provided. NOTE The difference in the addresses for Tessera and Constellation.

	staticnodes
	This is the path where staticnodes will be stored for a new network; for adding new node, the existing network's staticnodes should be available in yaml format in this file.

	genesis
	This is the path where genesis.json will be stored for a new network; for adding new node, the existing network's genesis.json should be available in json format in this file.

	bootnode
	This is only applicable when adding a new node to existing network and contains the boot node rpc details

The organizations section contains the specifications of each organization.

In the sample configuration example, we have four organization under the organizations section.

The snapshot of an organization field with sample values is below

 organizations:
 # Specification for the 1st organization. Each organization maps to a VPC and a separate k8s cluster
 - organization:
 name: carrier
 external_url_suffix: test.quorum.blockchaincloudpoc.com # This is the url suffix that will be added in DNS recordset. Must be different for different clusters
 cloud_provider: aws # Options: aws, azure, gcp, minikube

Each organization under the organizations section has the following fields.

	Field
	Description

	name
	Name of the organization

	external_url_suffix
	Public url suffix of the cluster.

	cloud_provider
	Cloud provider of the Kubernetes cluster for this organization. This field can be aws, azure, gcp or minikube

	aws
	When the organization cluster is on AWS

	k8s
	Kubernetes cluster deployment variables.

	vault
	Contains Hashicorp Vault server address and root-token in the example

	gitops
	Git Repo details which will be used by GitOps/Flux.

	services
	Contains list of services which could ca/peer/orderers/concensus based on the type of organization

For the aws and k8s field the snapshot with sample values is below

 aws:
 access_key: "<aws_access_key>" # AWS Access key, only used when cloud_provider=aws
 secret_key: "<aws_secret>" # AWS Secret key, only used when cloud_provider=aws

 # Kubernetes cluster deployment variables.
 k8s:
 context: "<cluster_context>"
 config_file: "<path_to_k8s_config_file>"

The aws field under each organization contains: (This will be ignored if cloud_provider is not aws)

	Field
	Description

	access_key
	AWS Access key

	secret_key
	AWS Secret key

The k8s field under each organization contains

	Field
	Description

	context
	Context/Name of the cluster where the organization entities should be deployed

	config_file
	Path to the kubernetes cluster configuration file

For gitops fields the snapshot from the sample configuration file with the example values is below

 # Git Repo details which will be used by GitOps/Flux.
 gitops:
 git_protocol: "https" # Option for git over https or ssh
 git_url: "https://github.com/<username>/bevel.git" # Gitops htpps or ssh url for flux value files
 branch: "<branch_name>" # Git branch where release is being made
 release_dir: "platforms/Quorum/releases/dev" # Relative Path in the Git repo for flux sync per environment.
 chart_source: "platforms/Quorum/charts" # Relative Path where the Helm charts are stored in Git repo
 git_repo: "github.com/<username>/bevel.git" # without https://
 username: "<username>" # Git Service user who has rights to check-in in all branches
 password: "<password>" # Git Server user password/personal token (Optional for ssh; Required for https)
 email: "<git_email>" # Email to use in git config
 private_key: "<path to gitops private key>" # Path to private key (Optional for https; Required for ssh)

The gitops field under each organization contains

	Field
	Description

	git_protocol
	Option for git over https or ssh. Can be https or ssh

	git_url
	SSH or HTTPs url of the repository where flux should be synced

	branch
	Branch of the repository where the Helm Charts and value files are stored

	release_dir
	Relative path where flux should sync files

	chart_source
	Relative path where the helm charts are stored

	git_repo
	Gitops git repo URL https URL for git push like "github.com/hyperledger/bevel.git"

	username
	Username which has access rights to read/write on repository

	password
	Password of the user which has access rights to read/write on repository (Optional for ssh; Required for https)

	email
	Email of the user to be used in git config

	private_key
	Path to the private key file which has write-access to the git repo (Optional for https; Required for ssh)

The services field for each organization under organizations section of Quorum contains list of services which could be only peers as of now.

Each organization with type as peer will have a peers service. The snapshot of peers service with example values is below

 peers:
 - peer:
 name: carrier
 subject: "O=Carrier,OU=Carrier,L=51.50/-0.13/London,C=GB" # This is the node subject. L=lat/long is mandatory for supplychain sample app
 type: validator # value can be validator or member, only applicable if consensus = 'ibft'
 geth_passphrase: 12345 # Passphrase to be used to generate geth account
 p2p:
 port: 21000
 ambassador: 15010 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8546
 ambassador: 15011 #Port exposed on ambassador service (use one port per org if using single cluster)
 transaction_manager:
 port: 8443 # use port: 9001 when transaction_manager = "constellation"
 ambassador: 8443 # use ambassador: 15012 when transaction_manager = "constellation"
 raft: # Only used if consensus = 'raft'
 port: 50401
 ambassador: 15013
 db: # Only used if transaction_manager = "tessera"
 port: 3306

The fields under peer service are

	Field
	Description

	name
	Name of the peer

	subject
	This is the alternative identity of the peer node

	type
	Type can be validator and nonvalidator. This is only applicable for ibft consensus.

	geth_passphrase
	This is the passphrase used to generate the geth account.

	p2p.port
	P2P port for Quorum

	p2p.ambassador
	The P2P Port when exposed on ambassador service

	rpc.port
	RPC port for Quorum

	rpc.ambassador
	The RPC Port when exposed on ambassador service

	transaction_manager.port
	Port used by Transaction manager tessera or constellation. Use 8443 for Tessera and 9001 for Constellation

	transaction_manager.ambassador
	The tm port when exposed on ambassador service. Must use 8443 for Tessera, and a corresponding port like 15023 for Constellation.

	raft.port
	RAFT port for Quorum when consensus: raft

	raft.ambassador
	The RAFT Port when exposed on ambassador service

	db.port
	MySQL DB internal port, only valid if transaction_manager: tessera

*** feature is in future scope

 Adding a new node in Quorum

 [bookmark: adding-new-org-to-existing-network-in-quorum]

Adding a new node in Quorum

	Prerequisites

	Create Configuration File

	Run playbook

[bookmark: prerequisites]

Prerequisites

To add a new organization in Quorum, an existing quorum network should be running, enode information of all existing nodes present in the network should be available, genesis block should be available in base64 encoding and the geth information of a node should be available and that node account should be unlocked prior adding the new node to the existing quorum network.

NOTE: Addition of a new organization has been tested on an existing network which is created by Bevel. Networks created using other methods may be suitable but this has not been tested by Bevel team.

[bookmark: create_config_file]

Create Configuration File

Refer this guide for details on editing the configuration file.

The network.yaml file should contain the specific network.organization details along with the enode information, genesis block in base64 encoding and geth account details

NOTE: Make sure that the genesis block information is given in base64 encoding. Also, if you are adding node to the same cluster as of another node, make sure that you add the ambassador ports of the existing node present in the cluster to the network.yaml

For reference, sample network.yaml file looks like below for RAFT consensus (but always check the latest network-quorum-newnode.yaml at platforms/quourm/configuration/samples):

This is a sample configuration file for Quorum network which has 4 nodes.
All text values are case-sensitive
network:
 # Network level configuration specifies the attributes required for each organization
 # to join an existing network.
 type: quorum
 version: 21.4.2 #this is the version of Quorum docker image that will be deployed. older version 2.1.1 is not compatible with supplychain contracts

 #Environment section for Kubernetes setup
 env:
 type: "dev" # tag for the environment. Important to run multiple flux on single cluster
 proxy: ambassador # value has to be 'ambassador' as 'haproxy' has not been implemented for Quorum
 # These ports are enabled per cluster, so if you have multiple clusters you do not need so many ports
 # This sample uses a single cluster, so we have to open 4 ports for each Node. These ports are again specified for each organization below
 ambassadorPorts: # Any additional Ambassador ports can be given here, this is valid only if proxy='ambassador'
 portRange: # For a range of ports
 from: 15010
 to: 15043
 # ports: 15020,15021 # For specific ports
 retry_count: 20 # Retry count for the checks on Kubernetes cluster
 external_dns: enabled # Should be enabled if using external-dns for automatic route configuration

 # Docker registry details where images are stored. This will be used to create k8s secrets
 # Please ensure all required images are built and stored in this registry.
 # Do not check-in docker_password.
 docker:
 url: "ghcr.io/hyperledger"
 username: "docker_username"
 password: "docker_password"

 # Following are the configurations for the common Quorum network
 config:
 consensus: "raft" # Options are "raft" and "ibft"
 ## Certificate subject for the root CA of the network.
 # This is for development usage only where we create self-signed certificates and the truststores are generated automatically.
 # Production systems should generate proper certificates and configure truststores accordingly.
 subject: "CN=DLT Root CA,OU=DLT,O=DLT,L=London,C=GB"
 transaction_manager: "tessera" # Options are "tessera" and "constellation"
 # This is the version of "tessera" or "constellation" docker image that will be deployed
 # Supported versions #
 # constellation: 0.3.2 (For all versions of quorum)
 tm_version: "21.7.3"
 tm_tls: "strict" # Options are "strict" and "off"
 tm_trust: "tofu" # Options are: "whitelist", "ca-or-tofu", "ca", "tofu"
 ## Transaction Manager nodes public addresses should be provided.
 # For "tessera", all participating nodes should be provided
 # For "constellation", only one is bootnode should be provided
 #
 # For constellation, use following. This will be the bootnode for all nodes
 # - "http://carrier.test.quorum.blockchaincloudpoc.com:15012/" #NOTE the end / is necessary and should not be missed
 # The above domain name is formed by the http://(peer.name).(org.external_url_suffix):(ambassador constellation port)/
 # In the example (for tessera) below, the domain name is formed by the https://(peer.name).(org.external_url_suffix):(ambassador default port)
 tm_nodes:
 - "https://carrier.test.quorum.blockchaincloudpoc.com:8443"
 - "https://manufacturer.test.quorum.blockchaincloudpoc.com:8443"
 - "https://store.test.quorum.blockchaincloudpoc.com:8443"
 - "https://warehouse.test.quorum.blockchaincloudpoc.com:8443"
 ##### Following keys are used only to add new Node(s) to existing network.
 staticnodes: # Existing network's static nodes file path needs to be given
 genesis: # Existing network's genesis.json file path needs to be given
 # make sure that the account is unlocked prior to adding a new node
 bootnode:
 #name of the node
 name: carrier
 #ambassador url of the node
 url: carrier.test.quorum.blockchaincloudpoc.com
 #rpc port of the node
 rpcport: 15011
 #id of the node.
 nodeid: 1

 # Allows specification of one or many organizations that will be connecting to a network.
 organizations:
 # Specification for the 1st organization. Each organization should map to a VPC and a separate k8s cluster for production deployments
 - organization:
 name: neworg
 external_url_suffix: test.quorum.blockchaincloudpoc.com # This is the url suffix that will be added in DNS recordset. Must be different for different clusters
 cloud_provider: aws # Options: aws, azure, gcp
 aws:
 access_key: "aws_access_key" # AWS Access key, only used when cloud_provider=aws
 secret_key: "aws_secret_key" # AWS Secret key, only used when cloud_provider=aws
 # Kubernetes cluster deployment variables. The config file path and name has to be provided in case
 # the cluster has already been created.
 k8s:
 context: "cluster_context"
 config_file: "cluster_config"
 # Hashicorp Vault server address and root-token. Vault should be unsealed.
 # Do not check-in root_token
 vault:
 url: "vault_addr"
 root_token: "vault_root_token"
 # Git Repo details which will be used by GitOps/Flux.
 # Do not check-in git_access_token
 gitops:
 git_protocol: "https" # Option for git over https or ssh
 git_url: "https://github.com/<username>/bevel.git" # Gitops https or ssh url for flux value files
 branch: "develop" # Git branch where release is being made
 release_dir: "platforms/quorum/releases/dev" # Relative Path in the Git repo for flux sync per environment.
 chart_source: "platforms/quorum/charts" # Relative Path where the Helm charts are stored in Git repo
 git_repo: "github.com/<username>/bevel.git" # Gitops git repository URL for git push
 username: "git_username" # Git Service user who has rights to check-in in all branches
 password: "git_access_token" # Git Server user access token (Optional for ssh; Required for https)
 email: "git_email" # Email to use in git config
 private_key: "path_to_private_key" # Path to private key file which has write-access to the git repo (Optional for https; Required for ssh)
 # The participating nodes are named as peers
 services:
 peers:
 - peer:
 name: neworg
 subject: "O=Neworg,OU=Neworg,L=51.50/-0.13/London,C=GB" # This is the node subject. L=lat/long is mandatory for supplychain sample app
 type: validator # value can be validator or member, only applicable if consensus = 'ibft'
 geth_passphrase: 12345 # Passphrase to be used to generate geth account
 p2p:
 port: 21000
 ambassador: 15010 #Port exposed on ambassador service (use one port per org if using single cluster)
 rpc:
 port: 8546
 ambassador: 15011 #Port exposed on ambassador service (use one port per org if using single cluster)
 transaction_manager:
 port: 8443 # use port: 9001 when transaction_manager = "constellation"
 ambassador: 8443 # use ambassador: 15012 when transaction_manager = "constellation"
 raft: # Only used if consensus = 'raft'
 port: 50401
 ambassador: 15013
 db: # Only used if transaction_manager = "tessera"
 port: 3306

Below three new sections are added to the network.yaml

	Field
	Description

	staticnodes
	Existing network's static nodes file path needs to be given

	genesis
	Existing network's genesis.json file path needs to be given

	bootnode
	Bootnode account details.

The network.config.bootnode field contains:

	Field
	Description

	name
	Name of the bootnode

	url
	URL of the bootnode, generally the ambassador URL

	rpcport
	RPC port of the bootnode

	nodeid
	Node ID of the bootnode

[bookmark: run_network]

Run playbook

The site.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/site.yaml] playbook is used to add a new organization to the existing network. This can be done using the following command

ansible-playbook platforms/shared/configuration/site.yaml --extra-vars "@path-to-network.yaml"

 Setting up a DLT/Blockchain network

Setting up a DLT/Blockchain network

Pre-requisites

To create a Production DLT/Blockchain network, ensure you have the following:

	One running Kubernetes Cluster and the Config file (kubeconfig.yaml) per Organization.

	One running Hashicorp Vault server per Organization. Unsealed and configured as per guidance here.

	Domain Name(s) configured as per guidance here.

	Private key file per Organization for GitOps with write-access to the Git repo as per guidance here.

	Git user details per Organization as per pre-requisites.

	Ansible controller configured as per guidance here.

NOTE: All commands are executed from the bevel directory which is the default directory created when you clone our Git repo.

Prepare build folder

If not already done, clone the git repository on your Ansible controller.

git clone https://github.com/<your username>/bevel.git

Create a folder called build inside bevel.

cd bevel
mkdir build

Copy the following files inside build folder:

	All the Kubernetes config files (kubeconfig.yaml).

	All the private key files.

Edit the configuration file

Depending on your choice of DLT/Blockchain Platform, select a network.yaml and copy it to build folder.

 # eg for Fabric
 cp platforms/hyperledger-fabric/configuration/samples/network-fabricv2.yaml build/network.yaml

Open and update the network.yaml according to the following Platform specific guides.

Platform-specific configuration files

	Hyperledger-Fabric

	R3-Corda

	Hyperledger-Indy

	Quorum

	Hyperledger-Besu

In summary, you will need to update the following:

	docker url, username and password.

	external_url_suffix depending on your Domain Name(s).

	All DNS addresses depending on your Domain Name(s).

	cloud_provider

	k8s section depending on your Kubernetes zone/cluster name/config filepath.

	vault

	gitops section depending on your git username, tokens and private key filepath.

Executing provisioning script

After all the configurations are updated in the network.yaml, execute the following to create the DLT network

Run the provisioning scripts
ansible-playbook platforms/shared/configuration/site.yaml -e "@./build/network.yaml"

The site.yaml playbook, in turn calls various playbooks depending on the configuration file and sets up your DLT/Blockchain network.

Verify successful configuration of DLT/Blockchain network

To verify if the network is successfully configured or not check if all the kubernetes pods are up and running or not.
Below are some commands to check the pod’s status:

	Kubectl get pods --all-namespaces : To get list of all the pods and their status across all the namespaces. It will look as below -
[image: ../_images/ListOfPods.png]

	Kubectl get pods -n xxxxx : To check status of pods of a single namespace mentioned in place of xxxxx. Example

[image: ../_images/GetOnePod.png]

	Kubectl logs -f <PODNAME> -n <NAMESPACE> : To check logs of a pod by giving required pod name and namespace in the command. Example-

[image: ../_images/LogsOfPod.png]

For a successful setup of DLT Network all the pods should be in running state.

Deleting an existing DLT/Blockchain network

The above mentioned playbook site.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/site.yaml] (ReadMe [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/]) can be run to reset the network using the network configuration file having the specifications which was used to setup the network using the following command:

ansible-playbook platforms/shared/configuration/site.yaml -e "@./build/network.yaml" -e "reset=true"

 How to debug a Bevel deployment

How to debug a Bevel deployment

While deploying a DLT/Blockchain network using Bevel, the pods and other components take some time to start. The Bevel automation (Ansible component) waits for the components to be at a “Running” or “Completed” state before proceeding with further steps. This is where you can see the message “FAILED - RETRYING: … “

Each component has a retry count which can be configured in the configuration file (network.yaml). When everything is fine, the components are usually up in 10-15 retries. Meanwhile, you can check the components while the retries occurs to avoid unnecessary wait time till the error/Failed message occurs in Ansible logs.

Bevel Deployment Flowchart

This flow chart shows the Bevel Deployment process flow. To verify the steps of deployment, follow the flow chart and check verification table ‘C’ to troubleshoot the general errors.
[image: ../_images/common_flowchart.png]

Common Troubleshooting

Table ‘C’

	Section
	Sub-section
	Problem
	Possible Cause
	Solution

	C1
	a
	Unable to mount config-map git-auth-{{ network.env.type }}
	Gitops key file path is wrong or file is unreadable by Ansible controller
	Check the gitops.private_key in network.yaml value is an absolute path, and the file is readable by the Ansible controller. Update this for all organizations and re-run the playbook after reset.

	C2
	a
	Unable to clone repository
	Correct permissions have not been given to the gitops public key
	Check that the public key corresponding to the gitops.private_key has been added to the Git repo with read-write permissions. As mentioned here

	C2
	b
	Unable to clone repository
	git_ssh value is wrong
	The gitops.git_url should be the SSH or HTTPs clone address of the git repository. For example for GitHub it will be like https://github.com/<username>/bevel.git

	C2
	c
	Unable to clone repository
	SSH is blocked from Kubernetes
	Check that you can clone the git repo using ssh from another pod on the same Kubernetes cluster. If not, check your organization security groups to allow port 22 access outbound

	C2
	d
	No such file or directory
	Files are not getting committed to the git repo from Ansible controller
	Check gitops section of each organization for possible mistakes in branch, password/token, git_url, etc

	C2
	e
	No such file or directory
	Files are not getting committed to the git repo from Ansible Controller
	Check whether git branch is right. Ansible playbook should be run from the same branch as specified in network.yaml in gitops section
 Check the Ansible logs to see if your local repo is in sync with the remote
Check whether the git password/token is valid

	C2
	f
	The storageclass SC_NAME is invalid
	The storageclass template is wrong and not according to Kubernetes defined rules
	Check that the new StorageClass template that you have added is valid by manually creating a storage class using the same template. (This error will occur only if you have added or changed the Storageclass template). Refer to Bevel Operations Guide on how to add a new storage class template

	C2
	g
	Retries exhausted while waiting for service account to come up
	If the flux pod is in crashloopbackoff, and flux pod log mentions
 "extracting public key: Load key \"/etc/fluxd/ssh/identity\": invalid format\r\n"
	Re-create the public/private key for gitops, add the gitops private key path to the network.yaml, add the public key to the repository, reset the network and run again. To reset the network ansible-playbook platforms/shared/configurations/site.yaml -e "" -e "reset=true"

NOTE:

If the components are not able to connect to each other, there could be some issue with load balancer. Check the haproxy or external DNS logs for more debugging. Also verify the security groups for any possible conflicts.

If any pod/component of the network is not running (in crashloopbackoff or in error state) or is absent in the get pods list.

Check the flux logs if it has been deployed or not.
Check the helm release. Check the status as well as if the key-values are generated properly.
For further debugging check for pod/container logs.
If components are there but not able to talk to each, check whether the ambasssador/ haproxy is working properly, urls are properly mapped and ports are opened for communication or not.

Hyperledger Fabric Checks

The flow chart shows the Fabric Deployment process. To verify the steps of deployment, follow the verification Table ‘F’, to troubleshoot the general errors.

[image: ../_images/fabric_flowchart.png]

Fabric Troubleshooting

Table ‘F’

	Section
	Sub-section
	Problem
	Possible Cause
	Solution

	F1
	a
	Ansible playbook failed after exhausting retry counts or
 CA pod is in Init:Crashloopbackoff state
 Playbook execution terminated at
 Role: create/ca-tools
 Task: Waiting for the CA server to be created in ORG_NAME-net
 Error: Retries exhausted
	Issues with Vault connectivity
	If the pod ca-random_suffix has status as Init:Crashloopbackoff. Check the logs of the init container certificates-init of this pod. This can be checked using the command
 kubectl logs ca-random_suffix -c certificates-init -n ORG_NAME-net

	F1
	b
	Ansible playbook failed after exhausting retry counts or
 CA pod is in Init:Crashloopbackoff state
 Playbook execution terminated at
 Role: create/ca-tools
 Task: Waiting for the CA server to be created in ORG_NAME-net
 Error: Retries exhausted
	Issue with Vault authentication
	If the logs mention "access denied", make sure that the Vault authentications were created correctly by checking all the tabs on Vault UI.
 Any Vault authentication problem is because of running different configurations (network.yaml) on the same Vault. Please ensure that you reset the network before re-running with a different network.yaml.

	F1
	c
	Ansible playbook failed after exhausting retry counts
 Playbook execution terminated at
 Role: create/ca_tools
 Task: Waiting for pod CA in ORG_NAME-net
 Error: Retry count exhausted

	Storage class is incorrect
	Check the description of the pod ca-random_suffix under the namespace ORG_NAME-net . This can be done using the command
 kubectl describe pod ca-random_suffix -n ORG_NAME-net
 If the events (at the end of description says) "pod has unbound immediate PersistentVolumeClaims (repeated n times)" then this can possibly check
 a. If you haven't modified any storage class templates, then check network.organization.cloud_provider for incorrect cloud provider
 b. If you have modified storage class, please make sure that the storage class works with the mentioned cloud provider under network.organization.cloud_provider

	F2
	a
	Orderer(s) pods aren't deployed
 Ansible playbook failed at
 Role: create/crypto/peer
 Task: Copy tls ca.crt from auto generated path to given path
 Error: Msg: Destination directory ORDERER_TLS_CERT_DIR does not exist
	Orderer TLS certificate path errors or inconsistency
 with the orderer definitions in the orderer section
and the orderer organizations
	Ensure the path network.orderer.certificate is an accessible (read and write) by the Ansible controller and is an absolute path.

	F2
	b
	Orderer(s) pods aren't deployed
 Ansible playbook failed at
 Role: create/crypto/peer
 Task: Copy tls ca.crt from auto generated path to given path
 Error: Msg: Destination directory ORDERER_TLS_CERT_DIR does not exist
	Orderer TLS certificate path errors or inconsistency
 with the orderer definitions in the orderer section
and the orderer organizations
	This also occur only when the orderer section under the organization with type as orderer and the orderer section under network.orderers are inconsistent. Check network.yaml and reset and re-run after fixing the inconsistency.

	F2
	c
	Orderer(s) pods aren't deployed
 Playbook execution terminated at
 Role: create/crypto/peer
 Task: Create ambassador credentials
 Error: error: Cannot read file ./build/crypto-config/peerOrganizations/
ORG_NAME-net/PEER_NAME-ORG_NAME-net-certchain.pem,
 open ./build/crypto-config/peerOrganizations/
ORG_NAME-net/PEER_NAME-ORG_NAME-net-certchain.pem:
 no such file or directory
	When having multi peers, the naming convention is incorrect
	This error usually comes when the peers aren't named in sequential order. Bevel currently supports peer naming in sequential order. So if there are 3 peers, they should always be named as peer0, peer1 and peer2. Check network.yaml and reset and re-run after fixing the inconsistency.

	F2
	d
	Ansible playbook failed after exhausting retry counts or
 orderer pod is in Init:Crashloopbackoff state
 Playbook execution terminated at
 Role: create/channels
 Task: Waiting for orderer pod ORDERER_NAME in ORG_NAME-net
 Error: Retries exhausted
	Issues with Vault connectivity
	If the pod ORDERER_NAME-0 has status as Init:Crashloopbackoff. Check the logs of the init container certificates-init of this pod. This can be checked using the command
 kubectl logs ORDERER_NAME-0 -n ORG_NAME-net -c certificates-init
 If the logs mention non accessibility of the Vault, make sure that the Vault is up and running and is accessible from the cluster

	F2
	e
	Ansible playbook failed after exhausting retry counts or
 orderer pod is in Init:Crashloopbackoff state
 Playbook execution terminated at
 Role: create/channels
 Task: Waiting for orderer pod ORDERER_NAME in ORG_NAME-net
 Error: Retries exhausted
	Issues with Vault authentication
	If the logs mention "access denied", make sure that the Vault authentications were created correctly by checking all the tabs on Vault UI. Any Vault authentication problem is because of running different configurations (network.yaml) on the same Vault. Please ensure that you reset the network before re-running with a different network.yaml.

	F3
	a
	Ansible playbook failed after exhausting retry counts or
 peer pod is in Init:Crashloopbackoff state
 Playbook execution terminated at
 Role: create/channels
 Task: Waiting for peer pod PEER_NAME in ORG_NAME-net
 Error: Retries exhausted/stuck
	Issue with Vault connectivity
	If the pod PEER_NAME-0 has the status as Init:Crashloopbackoff. Check the logs of the init container certificates-init of this pod. This can be checked using the command
 kubectl logs PEER_NAME-0 -n ORG_NAME-net -c certificates-init
 If the logs mention non accessibility of the Vault, make sure that the Vault is up and running and is accessible from the cluster

	F3
	b
	Ansible playbook failed after exhausting retry counts or
 peer pod is in Init:Crashloopbackoff state
 Playbook execution terminated at
 Role: create/channels
 Task: Waiting for peer pod PEER_NAME in ORG_NAME-net
 Error: Retries exhausted/stuck
	Issues with Vault authentication
	If the logs mention "access denied", make sure that the Vault authentications were created correctly by checking all the tabs on Vault UI. Any Vault authentication problem is because of running different configurations (network.yaml) on the same Vault. Please ensure that you reset the network before re-running with a different network.yaml.

	F4
	a
	Ansible playbook failed after exhausting retry counts or
 createchannel job pod is in Init:Crashloopbackoff state
 Playbook execution terminated at
 Role: create/channels_join
 Task: waiting for PEER_NAME to create channel CHANNEL_NAME
 Error: Retries exhausted/stuck
	Issues with Vault connectivity
	If the pod createchannel-CHANNEL_NAME-random_suffix has the status as Init:Crashloopbackoff. Check the logs of the init container certificates-init of this pod. This can be checked using the command
 kubectl logs createchannel-CHANNEL_NAME-random_suffix -n ORG_NAME-net -c certificates-init
 If the logs mention non accessibility of the Vault, make sure that the Vault is up and running and is accessible from the cluster

	F4
	b
	Ansible playbook failed after exhausting retry counts or
 createchannel job pod is in Init:Crashloopbackoff state
 Playbook execution terminated at
 Role: create/channels_join
 Task: waiting for PEER_NAME to create channel CHANNEL_NAME
 Error: Retries exhausted/stuck
	Issue with Vault authentication
	If the logs mention "access denied", make sure that the Vault authentications were created correctly by checking all the tabs on Vault UI. Any Vault authentication problem is because of running different configurations (network.yaml) on the same Vault. Please ensure that you reset the network before re-running with a different network.yaml.

	F4
	c
	Create channel pod is in crashloopbackoff or
 error state
 Ansible playbook is stuck on the retries at
 Role: create/channels_join
 Task: Waiting for ORG_NAME to create channel CHANNEL_NAME
 Error: Stuck at retries
	Non-accessibility of proxy URL(s)
	Check the logs of the pod createchannel-CHANNEL_NAME-random_suffix. This can be checked using the command
 kubectl logs createchannel-CHANNEL_NAME-random_suffix -n ORG_NAME-net
 If the logs mentions at the end
 Error: failed to create deliver client: orderer client failed to connect to ORDERER_NAME.EXTERNAL_URL_SUFFIX:8443:failed to create new connection: context deadline exceeded
 For this error, check the external URL suffix being available and check its access from the security groups of the VPC.
 This error is not expected when using minikube.

	F4
	d
	Ansible playbook retry count over for the task and no create_channel pod is visible
 Ansible playbook exhausted the total retry at
 Role: create/channels_join
 Task: `Waiting for ORG_NAME to create channel CHANNEL_NAME
 Error: Retry count exhausted
	Job failed more than 6 times due to an error
	All jobs in Bevel disappear if they failed for 6 times. To re-run the jobs, delete the HelmRelease resource using the command
 kubectl delete hr channel-ORG_NAME -n ORG_NAME-net
 and then wait for the pod createchannel-CHANNEL_NAME-random_suffix
 Once the pods come up, they will fail again, refer to solution mentioned above for possible resolution.

	F4
	e
	JoinChannel pod is/are in crashloopbackoff or error state
 Ansible playbook is stuck on the retries at
 Role: create/channels_join
 Task: Wait for job joinchannel-PEER_NAME-CHANNEL_NAME in ORG_NS
 Error: Stuck at retries
	Peer has already joined the channel
	Check the logs of the pod joinchannel-PEER_NAME-CHANNEL_NAME-random_suffix. This can be checked using the command
 kubectl logs joinchannel-PEER_NAME-CHANNEL_NAME-random_suffix -n ORG_NAME-net
 If the logs mentions at the end that
 Error: proposal failed (err: bad proposal response 500: cannot create ledger from genesis block: LedgerID already exists
 For this, reset the network if you want to start fresh and re-run the network.
 Alternatively, start deploying the ansible playbook from after the task role mentioned in first column.

	F4
	f
	Ansible playbook retry count over for the task and no join_channel pod is visible
 Ansible playbook exhausted the total retry at
 Role: create/channels_join
 Task: Wait for job joinchannel-PEER_NAME-CHANNEL_NAME in ORG_NS
 Error: Retries exhausted
	Job failed more than 6 times due to an error
	All jobs in Bevel disappear if they failed for 6 times. To re-run the jobs, delete the HelmRelease resource using the command
 kubectl delete hr join-CHANNEL_NAME-ORG_NAME-PEER_NAME -n ORG_NAME-net
 and then wait for the pod joinchannel-PEER_NAME-CHANNEL_NAME-random_suffix. Once the pods come up, they will fail again, refer to solution mentioned above for possible resolution.

	F5
	a
	Ansible playbook failed after exhausting retry counts or
 anchorpeer job pod is in Init:Crashloopbackoff state
 Playbook execution terminated at
 Role: create/chaincode/install
 Task: Waiting for the job anchorpeer-CHANNEL_NAME-ORG_NAME
 Error: Retries exhausted/stuck
	Issues with Vault connectivity
	If the pod anchorpeer-PEER_NAME-CHANNEL_NAME-random_suffix has the status as Init:Crashloopbackoff. Check the logs of the init container certificates-init of this pod. This can be checking using the command
 kubectl logs anchorpeer-PEER_NAME-CHANNEL_NAME-random_suffix -n ORG_NAME-net -c certificates-init
 If the logs mention non accessibility of the Vault, make sure that the Vault is up and running and is accessible from the cluster

	F6
	a
	Ansible playbook execution failed after exhausting retry counts or
 createchannel/joinchannel job pod is in Init:Crashloopbackoff state
 Playbook execution failed at
 Role: create/chaincode/instantiate
 Task: Waiting for chaincode to be installed on {{ peer.name }}
 Error: Retry count exhaunted, playbook stopped
	The chaincode git credentials are wrong/absent
	Check the git credentials under network.organization.services.peer.chaincode.repository for possible incorrect credentials

	F6
	b
	Ansible playbook execution failed after exhausting retry counts or
 createchannel/joinchannel job pod is in Init:Crashloopbackoff state
 Playbook execution failed at
 Role: create/chaincode/instantiate
 Task: Waiting for chaincode to be installed on {{ peer.name }}
 Error: Retry count exhaunted, playbook stopped
	Issues with Vault connectivity
	If the pod installchaincode-PEER_NAME-CHAINCODE_NAME-1-random_suffix or instantiatechaincode-PEER_NAME-CHAINCODE_NAME-1-random_suffix has the status as Init:Crashloopbackoff. Check the logs of the init container certificates-init of this pod. You can check this using the command
 kubectl logs installchaincode-PEER_NAME-CHAINCODE_NAME-1-random_suffix -n ORG_NAME-net -c certificates-init
 or
 kubectl logs instantiatechaincode-PEER_NAME-CHAINCODE_NAME-1-random_suffix -n ORG_NAME-net -c certificates-init
 If the logs mention non accessibility of the Vault, make sure that the Vault is up and running and is accessible from the cluster.

	F7
	a
	Ansible playbook execution failed
 Playbook execution failed at
 Role: create/channels_join
 Task: waiting for {{ peer.name }} to join {{ channel_join }}
 Error: genesis block file not found open allchannel.block: no such file or directory
	The orderer certificates aren't provided/non-accessible/incorrect
	This error comes when the orderer certificate mentioned in the orderer block network.orderers[*].certificate is invalid, the path not readable or contains the wrong tls certificate of orderer. Fix the errors and reset and re-run the playbook.

Final network validy check

For final checking of the validity of the fabric network.

	Create a CLI pod for any organization. (Now Peer CLI can be enabled from network.yaml itself. Check the sample network.yaml for reference)

Use this sample template.

 metadata:
 namespace: ORG_NAME-net
 images:
 fabrictools: hyperledger/fabric-tools:2.0
 alpineutils: ghcr.io/hyperledger/alpine-utils:1.0
 storage:
 class: ORG_NAMEsc
 size: 256Mi
 vault:
 role: ault-role
 address: VAULT_ADDR
 authpath: ORG_NAME-net-auth
 adminsecretprefix: secretsv2/crypto/peerOrganizations/ORG_NAME-net/users/admin
 orderersecretprefix: secretsv2/crypto/peerOrganizations/ORG_NAME-net/orderer
 serviceaccountname: vault-auth
 imagesecretname: regcred
 tls: false
 peer:
 name: PEER_NAME
 localmspid: ORG_NAMEMSP
 tlsstatus: true
 address: PEER_NAME.ORG_NAME-net.EXTERNAL_URL_SUFFIX:8443
 orderer:
 address: ORDERER_NAME

	To install the CLI

helm install -f cli.yaml /bevel/platforms/hyperledger-fabric/charts/fabric_cli/ -n <CLI_NAME>

	Get the CLI pod

export ORG1_NS=ORG_NAME-net
export CLI=$(kubectl get po -n ${ORG1_NS} | grep "cli" | awk '{print $1}')

	Copy the CLI pod name from the output list and enter the CLI using.

kubectl exec -it $CLI -n ORG_NAME-net -- bash

	To see which chaincodes are installed

peer chaincode list --installed (after exec into the CLI)

	Check if the chaincode is instantiated or not

peer chaincode list --instantiated -C allchannel (after exec into the CLI)

	Execute a transaction

For init:

peer chaincode invoke -o <orderer url> --tls true --cafile <path of orderer tls cert> -C <channel name> -n <chaincode name> -c '{"Args":[<CHAINCODE_INSTANTIATION_ARGUMENT>]}' (after exec into the cli)

Upon successful invocation, should display a status 200 msg.

Hyperledger Indy Checks

The flow chart shows the Indy Deployment process. To verify the steps of deployment, follow the Verification Table ‘N’, to troubleshoot the general errors.

[image: ../_images/indy_flowchart.png]

Indy Troubleshooting

Table ‘N’

	Section
	Sub-Section
	Problem
	Possible Cause
	Solution

	N1
	a
	Ansible playbook successful
Playbook execution terminated at
Role: setup/domain_genesis
Task: Create domain genesis
Error: Ansible vars or dict object not found, domain genesis was not created
	network.yaml not properly configured
	Please check organisation.service.trustees, organisation.service.stewards and organisation.service.endorsers is properly configured for the failing organisation in your network.yaml.
Please refer to indy_sample.yaml for more details.

	N1
	b
	Ansible playbook failed
Playbook execution terminated at
Role: setup/domain_genesis
Task: Create domain genesis
Error: Vault Access denied, Root Token invalid, Vault Sealed
	Vault connectivity
	If the logs mention "access denied", make sure that the Vault authentications were created correctly by checking all the tabs on Vault UI.
Any Vault authentication problem is because of running different configurations (network.yaml) on the same Vault.
Please ensure that you reset the network before re-running with a different network.yaml.

	N2
	a
	Ansible playbook successful
Playbook execution terminated at
Role: setup/pool_genesis
Task: Create pool genesis
Error: Ansible vars or dict object not found, pool genesis was not created
	network.yaml not properly configured
	Please check organisation.service.trustees, organisation.service.stewards and organisation.service.endorsers is properly configured for the failing organisation in your network.yaml.
Please refer to indy_sample.yaml for more details.

	N2
	b
	Ansible playbook failed
Playbook execution terminated at
Role: setup/pool_genesis
Task: Create pool genesis
Error: Vault Access denied, Root Token invalid, Vault Sealed
	Vault connectivity
	If the logs mention "access denied", make sure that the Vault authentications were created correctly by checking all the tabs on Vault UI.
Any Vault authentication problem is because of running different configurations (network.yaml) on the same Vault.
Please ensure that you reset the network before re-running with a different network.yaml.

	N3
	a
	Ansible playbook successful
Playbook execution terminated at
Role: setup/node
Task: Wait until steward pods are running
Error: logs of the nodes show that the nodes cannot connect with each other
	Port/IP blocked from firewall
	You can check the logs of node pods using: $> kubectl logs -f -n university university-university-steward-1-node-0 Properly configure the required outbound and inbound rules for the firewall settings for Ambassador Pod.
E.g.
if you using AWS the firewall setting for the Ambassador Pod will be K8S Cluster's worker-sg Security Group.

	N3
	b
	Ansible playbook successful
Playbook execution terminated at
Role: setup/node
Task: Wait until steward pods are running
Error: Not able to connect to the indy pool
	Ambassador IP does not match the PublicIps provided in network.yaml
	Check the Ambassador Host's IP using $> host <Ambassador Public URL> and verify if the same is present in the PublicIps: section of your network.yaml

	N3
	c
	Ansible playbook successful
Playbook execution terminated at
Role: setup/node
Task: Wait until steward pods are running
Error: Not able to connect to the indy pool
	Port/IP blocked from firewall
	Properly configure the required outbound and inbound rules for the firewall settings for Ambassador Pod.
E.g.
if you using AWS the firewall setting for the Ambassador Pod will be K8S Cluster's worker-sg Security Group.

	N3
	d
	Ansible playbook failed
Playbook execution terminated at
Role: setup/node
Task: Wait until steward pods are running
Error: Vault Access denied, Root Token invalid, Vault Sealed
	Vault connectivity
	If the logs mention "access denied", make sure that the Vault authentications were created correctly by checking all the tabs on Vault UI.
Any Vault authentication problem is because of running different configurations (network.yaml) on the same Vault.
Please ensure that you reset the network before re-running with a different network.yaml.

	N4
	a
	Ansible playbook successful
Playbook execution terminated at
Role: setup/endorsers
Task: Wait until identities are creating
Error: not able to connect to indy pool
	Port/IP blocked from firewall
	Properly configure the required outbound and inbound rules for the firewall settings for Ambassador Pod.
E.g.
if you using AWS the firewall setting for the Ambassador Pod will be K8S Cluster's worker-sg Security Group.

	N4
	b
	Ansible playbook successful
Playbook execution terminated at
Role: setup/endorsers
Task: Wait until identities are creating
Error: not able to connect to indy pool
	Ambassador IP does not match the PublicIps provided in network.yaml
	Check the Ambassador Host's IP using $> host <Ambassador Public URL> and verify if the same is present in the PublicIps: section of your network.yaml

	N4
	c
	Ansible playbook successful
Playbook execution terminated at
Role: setup/endorsers
Task: Wait until identities are creating
Error: Resource Temporarily Unavailable
	Insufficient memory issues leads to RockDB getting locked
	The steward node pods are not getting sufficient memory to turn up the RocksDB service hence it results in the nDB to get locked. Recommedation is to either scale up the k8s nodes or increase the memory of existing k8s nodes

	N4
	d
	Ansible playbook failed
Playbook execution terminated at
Role: setup/endorsers
Task: Wait until identities are creating
Error: Vault Access denied, Root Token invalid, Vault Sealed
	Vault connectivity
	If the logs mention "access denied", make sure that the Vault authentications were created correctly by checking all the tabs on Vault UI.
Any Vault authentication problem is because of running different configurations (network.yaml) on the same Vault.
Please ensure that you reset the network before re-running with a different network.yaml.

Final network validity check

For final checking of the validity of the indy network.

	Please find the generated pool genesis inside your releases/ReleaseName/OrgName/OrgName-ptg folder as pool_genesis.yaml.

NOTE: All the organisations will have the same pool genesis. Hence, you can pick from any organization

The sample ConfigMap:

apiVersion: helm.fluxcd.io/v1
kind: HelmRelease
metadata:
 name: employer-ptg
 annotations:
 fluxcd.io/automated: "false"
 namespace: employer-ns
spec:
 releaseName: employer-ptg
 chart:
 path: platforms/hyperledger-indy/charts/indy-pool-genesis
 git: https://github.com/<username>/bevel.git
 ref: main
 values:
 metadata:
 name: employer-ptg
 namespace: employer-ns
 organization:
 name: employer
 configmap:
 poolGenesis: |-
 {"reqSignature":{},"txn":{"data":{"data":{"alias":"university-steward-1","blskey":"3oYpr4xXDp1bgEKM6kJ8iaM66cpkHRe6vChvcEj52sFKforRkYbSq2G8ZF8dCSU4a8CdZWUJw6hJUYzY48zTKELYAgJrQyu7oAcmH1qQ5tqZc3ccp34wZaNFWEfWPt76cfd9BwGihzpMDRbQhMwLp68aasMXyYebn1MSbvkeg6UrmtM","blskey_pop":"RBS3XRtmErE6w1SEwHv69b7eSuHhnYh5tTs1A3NAjnAQwmk5SXeHUt3GNuSTB84L6MJskaziP8s7N6no34My4dizxkSbyuL7fWLEPTyxbAYZ3MGYzscZYWysXbSms2xFmYjT99n7uB78CgG8Chuo3iMuPJCAx6SBxTaAzTa7gAvtWB","client_ip":"127.0.0.1","client_port":15012,"node_ip":"127.0.0.1","node_port":15011,"services":["VALIDATOR"]},"dest":"Cj79w18ViZ7Q7gfb9iXPxYchHo4K4iVtL1oFjWbnrzBf"},"metadata":{"from":"NWpkXoWjzq9oQUTBiezzHi"},"type":"0"},"txnMetadata":{"seqNo":1,"txnId":"16bcef3d14020eac552e3f893b83f00847420a02cbfdc80517425023b75f124e"},"ver":"1"}
 {"reqSignature":{},"txn":{"data":{"data":{"alias":"university-steward-2","blskey":"4R1x9mGMVHu4vsWxiTgQEvQzPizyh2XspKH1KBr11WDNXt9dhbAVkSZBy2wgEzodjH9BcMzSjjVpHXQA3fJHgZJaGejH5DKzxyCm7XoEa8ff5rEnBfyGxMZRCtKio9GuovMBYmZkfA1XBexQcrZksPZc23NtnWJ9tWBonjWuzADiNKG","blskey_pop":"R14qoTS4urnSeNAMSgZzp2ryhi5kFLi1KCxK2ZP8Lk3Pa7FNFoqp6LrPanZxsdELVazsCEQv2B7fmexo3JGj3f2vtp2ZRzdaf9bAMReduFNZWe9vziQVYBA96maq82A7Ym2rSdK6hebJaix1ysv5LZy8jhNTYqjJoQ3fMEyRZ14EHM","client_ip":"127.0.0.1","client_port":15022,"node_ip":"127.0.0.1","node_port":15021,"services":["VALIDATOR"]},"dest":"ETdTNU6xrRwxuV4nPrXAecYsFGP6v8L5PpfGBnriC4Ao"},"metadata":{"from":"RhFtCjqTXAGbAhqJoVLrGe"},"type":"0"},"txnMetadata":{"seqNo":2,"txnId":"ab3146fcbe19c6525fc9c325771d6d6474f8ddec0f2da425774a1687a4afe949"},"ver":"1"}
 {"reqSignature":{},"txn":{"data":{"data":{"alias":"employer-steward-1","blskey":"2LieBpwUyP8gUVb16k7hGCUnZRNHdqazHVLbN2K2CgeE2cXt3ZC3yt8Gd8NheNHVdCU7cHcsEq5e1XKBS3LFXNQctiL6wMErxyXwcSWq8c9EtJwmqE7TESd5TaEYZhtrJ6TCDBdPU3BUFdw1q29g1omwYXRd6LZHmBsiWHYJbf4Mued","blskey_pop":"R9q58hsWHaVenRefuwh44fnhX8TcJMskiBX1Mf5ue7DEH8SGTajUcWVUbE3kT7mNeK2TeUMeXDcmboeSCkbpqtX2289ectbQAKj8pKWmkp7o5nkYjYwvqUsTaMutxXjSN6pvH9rLU13y86XkU1qDYoWvfJ6GT3qVetpEP26BGPv6Kq","client_ip":"127.0.0.1","client_port":15032,"node_ip":"127.0.0.1","node_port":15031,"services":["VALIDATOR"]},"dest":"C5F8eDsQZYQcUx1NPENenr9A1Jqr9ZCAXrcAoAcGkutY"},"metadata":{"from":"MKMbzGYtfpLk2NVhYSeSRN"},"type":"0"},"txnMetadata":{"seqNo":3,"txnId":"d85334ed1fb537b2ff8627b8cc4bcf2596d5da62c6d85244b80675ebae91fd07"},"ver":"1"}
 {"reqSignature":{},"txn":{"data":{"data":{"alias":"employer-steward-2","blskey":"36q2aZbJBp8Dpo16wzHqWGbsDs6zZvjxZwxxrD1hp1iJXyGBsbyfqMXVNZRokkNiD811naXrbqc8AfZET5sB5McQXni5as6eywqb9u1ECthYsemMq7knqZLGD4zRueLqhrAXLMVqdH4obiFFjjaEQQo9oAAzQKTfyimNWwHnwxp4yb3","blskey_pop":"QkYzAXabCzgbF3AZYzKQJE4sC5BpAFx1t32T9MWyxf7r1YkX2nMEZToAd5kmKcwhzbQZViu6CdkHTWrWMKjUHyVgdkta1QqQXQVMsSN7JPMSBwFSTc9qKpxC9xRabZHEmha5sD8nsEqwDCQ5iQ2dfuufGoPTEnrdNodW1m9CMRHsju","client_ip":"127.0.0.1","client_port":15042,"node_ip":"127.0.0.1","node_port":15041,"services":["VALIDATOR"]},"dest":"D2m1rwJHDo17nnCUSNvd7m1qRCiV6qCvEXxgGfuxtKZh"},"metadata":{"from":"P5DH5NEGC3agMBssdEMJxv"},"type":"0"},"txnMetadata":{"seqNo":4,"txnId":"1b0dca5cd6ffe526ab65f1704b34ec24096b75f79d4c0468a625229ed686f42a"},"ver":"1"}

	Copy the genesis block to a new file, say pool_genesis.txt

pool_genesis.txt >>

{"reqSignature":{},"txn":{"data":{"data":{"alias":"university-steward-1","blskey":"3oYpr4xXDp1bgEKM6kJ8iaM66cpkHRe6vChvcEj52sFKforRkYbSq2G8ZF8dCSU4a8CdZWUJw6hJUYzY48zTKELYAgJrQyu7oAcmH1qQ5tqZc3ccp34wZaNFWEfWPt76cfd9BwGihzpMDRbQhMwLp68aasMXyYebn1MSbvkeg6UrmtM","blskey_pop":"RBS3XRtmErE6w1SEwHv69b7eSuHhnYh5tTs1A3NAjnAQwmk5SXeHUt3GNuSTB84L6MJskaziP8s7N6no34My4dizxkSbyuL7fWLEPTyxbAYZ3MGYzscZYWysXbSms2xFmYjT99n7uB78CgG8Chuo3iMuPJCAx6SBxTaAzTa7gAvtWB","client_ip":"127.0.0.1","client_port":15012,"node_ip":"127.0.0.1","node_port":15011,"services":["VALIDATOR"]},"dest":"Cj79w18ViZ7Q7gfb9iXPxYchHo4K4iVtL1oFjWbnrzBf"},"metadata":{"from":"NWpkXoWjzq9oQUTBiezzHi"},"type":"0"},"txnMetadata":{"seqNo":1,"txnId":"16bcef3d14020eac552e3f893b83f00847420a02cbfdc80517425023b75f124e"},"ver":"1"}
{"reqSignature":{},"txn":{"data":{"data":{"alias":"university-steward-2","blskey":"4R1x9mGMVHu4vsWxiTgQEvQzPizyh2XspKH1KBr11WDNXt9dhbAVkSZBy2wgEzodjH9BcMzSjjVpHXQA3fJHgZJaGejH5DKzxyCm7XoEa8ff5rEnBfyGxMZRCtKio9GuovMBYmZkfA1XBexQcrZksPZc23NtnWJ9tWBonjWuzADiNKG","blskey_pop":"R14qoTS4urnSeNAMSgZzp2ryhi5kFLi1KCxK2ZP8Lk3Pa7FNFoqp6LrPanZxsdELVazsCEQv2B7fmexo3JGj3f2vtp2ZRzdaf9bAMReduFNZWe9vziQVYBA96maq82A7Ym2rSdK6hebJaix1ysv5LZy8jhNTYqjJoQ3fMEyRZ14EHM","client_ip":"127.0.0.1","client_port":15022,"node_ip":"127.0.0.1","node_port":15021,"services":["VALIDATOR"]},"dest":"ETdTNU6xrRwxuV4nPrXAecYsFGP6v8L5PpfGBnriC4Ao"},"metadata":{"from":"RhFtCjqTXAGbAhqJoVLrGe"},"type":"0"},"txnMetadata":{"seqNo":2,"txnId":"ab3146fcbe19c6525fc9c325771d6d6474f8ddec0f2da425774a1687a4afe949"},"ver":"1"}
{"reqSignature":{},"txn":{"data":{"data":{"alias":"employer-steward-1","blskey":"2LieBpwUyP8gUVb16k7hGCUnZRNHdqazHVLbN2K2CgeE2cXt3ZC3yt8Gd8NheNHVdCU7cHcsEq5e1XKBS3LFXNQctiL6wMErxyXwcSWq8c9EtJwmqE7TESd5TaEYZhtrJ6TCDBdPU3BUFdw1q29g1omwYXRd6LZHmBsiWHYJbf4Mued","blskey_pop":"R9q58hsWHaVenRefuwh44fnhX8TcJMskiBX1Mf5ue7DEH8SGTajUcWVUbE3kT7mNeK2TeUMeXDcmboeSCkbpqtX2289ectbQAKj8pKWmkp7o5nkYjYwvqUsTaMutxXjSN6pvH9rLU13y86XkU1qDYoWvfJ6GT3qVetpEP26BGPv6Kq","client_ip":"127.0.0.1","client_port":15032,"node_ip":"127.0.0.1","node_port":15031,"services":["VALIDATOR"]},"dest":"C5F8eDsQZYQcUx1NPENenr9A1Jqr9ZCAXrcAoAcGkutY"},"metadata":{"from":"MKMbzGYtfpLk2NVhYSeSRN"},"type":"0"},"txnMetadata":{"seqNo":3,"txnId":"d85334ed1fb537b2ff8627b8cc4bcf2596d5da62c6d85244b80675ebae91fd07"},"ver":"1"}
{"reqSignature":{},"txn":{"data":{"data":{"alias":"employer-steward-2","blskey":"36q2aZbJBp8Dpo16wzHqWGbsDs6zZvjxZwxxrD1hp1iJXyGBsbyfqMXVNZRokkNiD811naXrbqc8AfZET5sB5McQXni5as6eywqb9u1ECthYsemMq7knqZLGD4zRueLqhrAXLMVqdH4obiFFjjaEQQo9oAAzQKTfyimNWwHnwxp4yb3","blskey_pop":"QkYzAXabCzgbF3AZYzKQJE4sC5BpAFx1t32T9MWyxf7r1YkX2nMEZToAd5kmKcwhzbQZViu6CdkHTWrWMKjUHyVgdkta1QqQXQVMsSN7JPMSBwFSTc9qKpxC9xRabZHEmha5sD8nsEqwDCQ5iQ2dfuufGoPTEnrdNodW1m9CMRHsju","client_ip":"127.0.0.1","client_port":15042,"node_ip":"127.0.0.1","node_port":15041,"services":["VALIDATOR"]},"dest":"D2m1rwJHDo17nnCUSNvd7m1qRCiV6qCvEXxgGfuxtKZh"},"metadata":{"from":"P5DH5NEGC3agMBssdEMJxv"},"type":"0"},"txnMetadata":{"seqNo":4,"txnId":"1b0dca5cd6ffe526ab65f1704b34ec24096b75f79d4c0468a625229ed686f42a"},"ver":"1"}

	Install indy-CLI, in case not installed already, follow the official installation steps [https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/cli/README.html].

	Open the indy-CLI terminal

~$ indy-cli

	Create a pool

indy> pool create <POOL_ALIAS> gen_txn_file=<Path to pool_genesis.txt>

	Connect to indy pool

indy> pool connect <POOL_ALIAS>

Upon successful connection, should display a Pool Connected Successfully msg.

R3 Corda Checks

The flow chart shows the R3 Corda process. To verify the steps of deployment, follow the Verification Table ‘R’, to troubleshoot the general errors.

[image: ../_images/corda_flowchart.png]

R3 Corda Troubleshooting

Table ‘N’

	Section
	Sub-Section
	Problem
	Possible Cause
	Solution

	R1
	a
	Ansible playbook failed
Playbook execution terminated at
Role: create/certificates/ambassador
Task: Copy generated ambassador tls certs to given build location.
Error: Destination directory, example: /home/[user]/build/corda/doorman/tls,
 does not exist
	Folder to copy tls certs does not exist.
	network.network_services.certificate value is either misspelled or directory doesn't exist.

	R1
	b
	Ansible playbook failed
Playbook execution terminated at
Role: setup/vault_kubernetes
Task: Write reviewer token
Error: Error writing data to auth/cordadoormanjv/config: Error making API request.
 Code: 403. Errors: permission denied.
	Folder permission might be incorrect.
	Fix the folder permission with chmod to grand access to the cert-file.

	R1
	c
	Ansible playbook failed
Playbook execution terminated at
Role: setup/vault_kubernetes
Task: Write reviewer token
Error: Error writing data to auth/cordadoormanjv/config: Error making API request.
 Code: 403. Errors: permission denied.
	Vault root_token might be incorrect.
	network.organizations.organization.vault.root_token value is incorrect.

	R1
	d
	Ansible playbook failed
Playbook execution terminated at
Role: gitops_role
Task: gitops_task
Error: gitops_related_error
	Gitops variables are wrongly configured.
	Please verify all the Gitops blocks in your network.yaml.

	R1
	e
	Ansible playbook failed
Playbook execution terminated at
Role: create/certificates/doorman
Task: Any task that interacts with vault
Error: Vault timeout or related error.
	Vault was unavailable due to connection issues.
	Please verify all Vault configuration field in the network.yaml. Additionally check if the Vault service/instance is online and reachable.

	R1
	f
	Ansible playbook failed
Playbook execution terminated at
Role: create/certificates/nms
Task: Any task that interacts with vault
Error: Vault timeout or related error.
	Vault was unavailable due to connection issues.
	Please verify all Vault configuration field in the network.yaml. Additionally check if the Vault service/instance is online and reachable.

	R1
	g
	Ansible playbook failed

Error: Doorman/NMS are unreachable HTTP error.
Role:
Task:** Check that network services uri are reachable.
	URI/URL could be misconfigured in the network.yaml.
Something else went wrong that caused a timeout.
	Reset network and retry, in addition you could you the logs for detailed reasons in why the init container is failing to start.

	R2
	a
	Ansible playbook failed
Playbook execution terminated at
Role: create/certificates/notary
Task: Any task that interacts with vault
Error: Vault timeout or related error.
	Vault was unavailable due to connection issues.
	Please verify all Vault configuration field in the network.yaml. Additionally check if the Vault service/instance is online and reachable.

	R3
	a
	Ansible playbook failed
Playbook execution terminated at
Role: create/node_component
Task: create value file for notaryjv job
Error: AnsibleUndefinedVariable: 'dict object' has no attribute 'corda-X.X'
	Corda version is not supported
	network.version value must be a supported Corda version.

	R3
	b
	Init container failed

Error: Notary DB Failed
	Notary registration not happened properly or Notary store certificates failed.
	Check the notary registration container logs (see below). Check vault path '/credentials' for nodekeystore, sslkeystore and truststore certificates or check for error in log (see below) store-certs container of notary-registration job.

	R4
	a
	Ansible playbook failed
Playbook execution terminated at
Role: create/certificates/node
Task: Any task that interacts with vault
Error: Vault timeout or related error.
	Vault was unavailable due to connection issues.
	Please verify all Vault configuration field in the network.yaml. Additionally check if the Vault service/instance is online and reachable.

	R5
	a
	One or more organization(s) are missing from the overview.
	Something went wrong with the registration or connection issues occured.
	Check the status of the pods to make sure they are running. Use the commands in the table below to confirm the succesful registration.

Final R3 Corda (Network) Validation

	What?
	How?
	Comments

	Check if all* pods are running
	kubectl get pods -A or kubectl get pods -n <namespace>
 Example:
 [image:]
	*Keep in mind that pods are still initializing after Ansible is finished.

	Check registration of notary nodes
	kubectl logs <podname> -n <namespace> notary-initial-registration
 Example:
 [image:]
	

	Check Corda logging
	kubectl logs <podname> -n <namespace> -c corda-logs
	

	Check Corda status
	kubectl logs <podname> -n <namespace> -c corda-node
 Example:
 [image:]
	

	Check DB pods
	kubectl logs <podname> -n <namespace>
 Example:
 [image:]
	

	Verify that all
 the nodes are shown in the network map
	Go to the URL, example: https://[orderer].[name].[environment_name].aws.blockchain.com:8443, specified in the network.yaml.
 Example:
 [image:]
	*It takes time for the URL to become available.

Quorum Checks

The flow chart shows the Quorum Deployment process. To verify the steps of deployment, follow the verification Table ‘Q’, to troubleshoot the general errors.

[image: ../_images/quorum_flowchart.png]

Quorum Troubleshooting

Table ‘Q’

	Section
	Sub-section
	Problem
	Possible Cause
	Solution

	Q1
	a
	Organization(s) pods aren't deployed
 Playbook execution failed at
 Role: create/genesis_nodekey
 Task: Copy genesis.json file
 Error: Destination directory does not exist
	Build directory does not exist or not accessible
	Ensure the path network.config.genesis/network.config.staticnodes folder path is accessible(read and write) by ansible controller and is an absolute path

	Q1
	b
	Organization(s) pods aren't deployed
 Playbook execution failed at
 Role: create/crypto/tessera
 Task: Generate node tm keys
 Error: non-zero return code
	Campatability issue with JDK/JRE and Tessera version
	Install the correct JDK/JRE for the version of Tessera you are using: Use JDK/JRE 11 for tessera version 0.10.3 and later and use JDK/JRE version 8 for 0.10.2 and earlier.

	Q1
	c
	Organization(s) pods aren't deployed
 Playbook execution failed at
 Role: setup/vault_kubernetes
 Task: Vault Auth enable for organisation
 Error: Error enabling kubernetes auth: Error making API request
	Vault authentication issue
	Ensure vault credentials are properly mentioned in network.yaml file/Access to the given path

	Q1
	d
	Ansible playbook failed after exhausting retry counts or
 peer pod is in Init:Crashloopbackoff state
 Playbook execution terminated at
 Role: create/tessera
 Task: Waiting for peer pod PEER_NAME in ORG_NAME-quo
 Error: Retries exhausted/stuck
	Issue with Vault connectivity
	If the pod PEER_NAME-0 has the status as Init:Crashloopbackoff. Check the logs of the init container certificates-init of this pod. This can be checked using the command
 kubectl logs PEER_NAME-0 -n ORG_NAME-quo -c certificates-init
 If the logs mention non accessibility of the Vault, make sure that the Vault is up and running and is accessible from the cluster

	Q1
	e
	Ansible playbook failed after exhausting retry counts or
 peer pod is in Init:Crashloopbackoff state
 Playbook execution terminated at
 Role: create/constellation
 Task: Waiting for peer pod PEER_NAME in ORG_NAME-quo
 Error: Retries exhausted/stuck
	Issue with Vault connectivity
	If the pod PEER_NAME-0 has the status as Init:Crashloopbackoff. Check the logs of the init container certificates-init of this pod. This can be checked using the command
 kubectl logs PEER_NAME-0 -n ORG_NAME-quo -c certificates-init
 If the logs mention non accessibility of the Vault, make sure that the Vault is up and running and is accessible from the cluster

	Q1
	f
	Ansible playbook failed
 Playbook execution terminated at
 Role: create/crypto/raft
 Task:Copy the crypto material to Vault
 Error: Vault Access denied, Root Token invalid, Vault Sealed
	Issue with Vault connectivity
	If the logs mention "access denied", make sure that the Vault authentications were created correctly by checking all the tabs on Vault UI.
 Any Vault authentication problem is because of running different configurations (network.yaml) on the same Vault. Please ensure that you reset the network before re-running with a different network.yaml.

	Q1
	g
	Ansible playbook failed
 Playbook execution terminated at
 Role: create/crypto/ibft
 Task: Copy the crypto material to Vault
 Error: Vault Access denied, Root Token invalid, Vault Sealed
	Issue with Vault connectivity
	If the logs mention "access denied", make sure that the Vault authentications were created correctly by checking all the tabs on Vault UI.
 Any Vault authentication problem is because of running different configurations (network.yaml) on the same Vault. Please ensure that you reset the network before re-running with a different network.yaml.

	Q1
	h
	Ansible playbook failed
 Playbook execution terminated at
 Role: create/tessera or create/constellation
 Task: Create value file for Tessera TM for each node
 Error: could not locate file in lookup: network.config.genesis
	Genesis file not present in the location/not added in configuration file
	Ensure the path of genesis file of exising network is correct/accessible(read and write) by ansible controller and is an absolute path

	Q1
	i
	Ansible playbook failed
 Playbook execution terminated at
 Role: create/tessera or create/constellation
 Task: Create value file for Tessera TM for each node
 Error: could not locate file in lookup: network.config.staticnodes
	Staticnodes file not present in the location/not added in configuration file
	Ensure the path of staticnodes file of exising network is correct/accessible(read and write) by ansible controller and is an absolute path

	Q2
	a
	Organization(s) pods successfully deployed
Error: Not able to connect to geth console of an organization(s)
	Check the logs of the tessera container tessera of this pod.
This can be checked using the command kubectl logs PEER_NAME-0 -n ORG_NAME-quo -c tessera.
If logs says UnknownHostException then probable reason could be due to External Url Suffix not
properly configured/defined in network.yaml/problem in accessing it
	Ensure the mentioned external_url_suffix is added in DNS recordset and is different from other clusters incase configured.

	Q2
	b
	Organization(s) pods successfully deployed
Error: Issue in connecting to transaction manager
	Check the logs of the tessera container tessera of this pod.
This can be checked using the command kubectl logs PEER_NAME-0 -n ORG_NAME-quo -c tessera.
If logs says SSLHandshakeException: Remote host terminated the handshake
when connecting to https://(peer.name).(org.external_url_suffix):(ambassador default port)
	Ensure the peer name and external url suffix mentioned correctly as per the configuration under network.config.tm_nodes

Final network validity check

For final checking of the validity of the quorum network.

	Start interactive java script console to the node by doing geth attach

 geth attach http://<peer.name>.<external_url_suffix>:<ambassador rpc port>

	Use admin.peers to get a list of the currently connected peers to ensure all the nodes are up and connected as per the configuration on geth console.

 $ admin.peers

	Use ‘/upcheck’ endpoint to check the health of transaction manager

$ curl --location --request GET 'https://<peer.name>.<external_url_suffix>:<ambassador port>/upcheck' -k

Upon successfull connection, response should be 200 I'm up!

NOTE: Use /partyinfo endpoint to know connected transaction manager,last connect time and public keys

 Adding a new storageclass

 [bookmark: adding-new-storageclass]

Adding a new storageclass

As storageclass templates vary as per requirements and cloud provider specifications, this guide will help in using a new storageclass which is not supported by Hyperledger Bevel

	Adding a new storage class for Hyperledger Fabric

	Adding a new storage class for R3-Corda

	Adding a new storage class for Hyperledger Indy

	Adding a new storage class for Quorum

[bookmark: fabric]

Adding a new storage class for Hyperledger Fabric

To add a new storageclass for Hyperledger Fabric, perform the following steps:

	Add the new storageclass template sample_sc.tpl, under platforms/hyperledger-fabric/configuration/roles/create/storageclass/templates with metadata.name (storageclass name) as the variable sc_name. For example,

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: {{ sc_name }}
provisioner: kubernetes.io/aws-ebs
parameters:
 type: gp2
 encrypted: "true"

	Mention the template file, which you created above, under platforms/hyperledger-fabric/configuration/roles/create/storageclass/vars/main.yaml with a variable reference. For example,

sc_templates:
 sample-sc: sample_sc.tpl

	Set the type variable to sample-sc (variable created in step 2) in the task Create Storage Class value file for orderers and Create Storage Class value file for Organizations, located in platforms/hyperledger-fabric/configuration/roles/create/storageclass/tasks/main.yaml

[bookmark: corda]

Adding a new storage class for R3-Corda

To add a new storageclass for R3-Corda, perform the following steps:

	Add the new storageclass template sample_sc.tpl, under platforms/r3-corda/configuration/roles/create/k8_component/templates with metadata.name (storageclass name) as the variable component_name. For example,

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: {{ component_name }}
provisioner: kubernetes.io/aws-ebs
reclaimPolicy: Delete
volumeBindingMode: Immediate
parameters:
 encrypted: "true"

	Mention the template file, which you created above, under platforms/r3-corda/configuration/roles/create/k8_component/vars/main.yaml with a variable reference. For example,

dlt_templates:
 sample-sc: sample_sc.tpl

	Set the component_type and component_name variable to sample-sc (variable created in step 2) in the task Create storageclass, located in platforms/r3-corda/configuration/roles/create/storageclass/tasks/main.yaml

[bookmark: indy]

Adding a new storage class for Hyperledger Indy

To add a new storageclass for Hyplerledger Indy, perform the following steps:

	Add the new storageclass template sample_sc.tpl, under platforms/hyperledger-indy/configuration/roles/create/k8_component/templates with metadata.name (storageclass name) as the variable component_name. For example,

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: {{ component_name }}
provisioner: kubernetes.io/aws-ebs
reclaimPolicy: Delete
volumeBindingMode: Immediate
parameters:
 encrypted: "true"

	Mention the template file, which you created above, under platforms/hyperledger-indy/configuration/roles/create/k8_component/vars/main.yaml with a variable reference. For example,

k8_templates:
 sample-sc: sample_sc.tpl

	Set the component_name variable to sample-sc (variable created in step 2) in the task Create Storage Class, located in platforms/hyperledger-indy/configuration/deploy-network.yaml

[bookmark: quorum]

Adding a new storage class for Quorum

To add a new storageclass for Quorum, perform the following steps:

	Add the new storageclass template sample_sc.tpl, under platforms/quorum/configuration/roles/create/k8_component/templates with metadata.name (storageclass name) as the variable component_name. For example,

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: {{ component_name }}
provisioner: kubernetes.io/aws-ebs
reclaimPolicy: Delete
volumeBindingMode: Immediate
parameters:
 encrypted: "true"

	Mention the template file, which you created above, under platforms/quorum/configuration/roles/create/k8_component/vars/main.yaml with a variable reference. For example,

dlt_templates:
 sample-sc: sample_sc.tpl

	Set the component_type and component_name variable to sample-sc (variable created in step 2) in the task Create storageclass, located in platforms/quorum/configuration/roles/create/storageclass/tasks/main.yaml

 Upgrading a running helm2 Bevel deployment to helm3

 [bookmark: upgrading-2to3]

Upgrading a running helm2 Bevel deployment to helm3

This guide enables an operator to upgrade an existing Bevel helm2 deployment to helm3

	Prerequisites

	Deleting the existing flux deployment

	Upgrade the helm deployments from Helm v2 to v3

	Re-deployment of flux

[bookmark: prerequisites]

Prerequisites

a. A running Bevel deployment based on helm v2
b. Helm v2 binary in place and added to the path (accessible by the name `helm`)
c. Bevel repository with the latest code

[bookmark: delete_flux]

Deleting the existing flux deployment

The flux deployment has changed for helm v3, thus the older flux should be deleted.
Also, the older flux will interfere with the upgradation process, hence its removal or de-sync is necessary.

To delete the existing flux deployment, run:

helm del --purge flux-{{ network.env.type }}

[bookmark: upgrade2to3]

Upgrade the helm deployments from Helm v2 to v3

Perform the following steps to upgrade the deployments

Download helm3 binary
wget https://get.helm.sh/helm-v3.2.4-linux-amd64.tar.gz

Extract the binary
tar -xvf helm-v3.2.4-linux-amd64.tar.gz

Move helm binary to the current folder
mv linux-amd64/helm helm3

Download the helm 2to3 plugin
./helm3 plugin install https://github.com/helm/helm-2to3

Convert all the releases to helm3 using
helm ls | awk '{print $1}' | xargs -n1 helm3 2to3 convert --delete-v2-releases

To convert a single helm release
./helm3 2to3 convert RELEASE_NAME --delete-v2-releases

NOTE: After migration, you can view the helm3 releases using the command,

./helm3 ls --all-namespaces

[bookmark: redeploy]

Re-deployment of flux

With the lastest Bevel repo clone and the network.yaml, you can redeploy flux using

ansible-playbook platforms/shared/configuration/kubernetes-env-setup.yaml -e @<PATH_TO_NETWORK_YAML>

 Developer Guide

Developer Guide

Quickstart Guides

	Developer Prerequisites

	Running Bevel DLT network on Minikube

	DLT Blockchain Network deployment using Docker

Additional Developer prerequisites

	Sphinx tool

	Molecule

Sphinx tool

Sphinx is a tool that makes it easy to create intelligent and beautiful documentation.
This tool is needed to build Hyperledger Bevel documentation from docs folder.

	Sphinx version used 2.1.1

Sphinx installation:
Follow the link [http://www.sphinx-doc.org/en/master/usage/installation.html] to install sphinx documentation tool.

All Hyperledger Bevel documentation and Sphinx Configuration files (conf.py) are located in docs/source [https://github.com/hyperledger/bevel/tree/main/docs/source] folder.
To build the documentation, execute the following command from docs directory:

make html
or for Windows
.\Make.bat html

Molecule

Molecule [https://molecule.readthedocs.io/en/latest/] is designed to aid in the development and testing of Ansible [https://ansible.com/] roles.
In Bevel, Molecule is used to check for common coding standards, yaml errors and unit testing Ansible code/roles.

	Molecule version used 2.22

Requirements

	Docker Engine

	Python3 (and pip configured with python3)

Molecule installation
Please refer to the Virtual environment [https://virtualenv.pypa.io/en/latest/] documentation for installation best
practices. If not using a virtual environment, please consider passing the
widely recommended ‘–user’ flag [https://packaging.python.org/tutorials/installing-packages/#installing-to-the-user-site] when invoking pip.

$ pip install --user 'molecule[docker]'

The existing test scenarios are found in the molecule folder under configuration of each platform e.g. platforms/shared/configuration/molecule [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/molecule] folder.

Ansible Roles and Playbooks

	Common Configurations

	Corda Configurations

	Corda Enterprise Configurations

	Fabric Configurations

	Indy Configurations

	Quorum Configurations

	Hyperledger Besu Configurations

Helm Charts

	Common Charts

	Corda Charts

	Corda Enterprise Helm Charts

	Hyperledger Fabric Charts

	Indy Charts

	Quorum Charts

	Hyperledger Besu Charts

Jenkins Automation

	Jenkins Pipeline

 Developer Prerequisites

Developer Prerequisites

The following mandatory pre-requisites must be completed to set up a development environment for Bevel.

The process of setting up developer pre-requisites can be done manually or via an automation script (currently script is for windows OS only)

Script Based Setup

You can use the scripts here [https://github.com/hyperledger/bevel/tree/main/platforms/shared/scripts] to setup developer prerequisites for Windows or Mac systems.

NOTE: You need to run the script with admin rights. This can be done by right clicking the script and selecting ‘Run as admininstrator’.

Manual Setup

The estimated total effort is 55 mins.

NOTE: You will need at least 8GB RAM to run Bevel on local machine.

Setting up Git on your machine

Estimated Time: 10 minutes

To use Git, you need to install the software on your local machine.

	Download and install git bash from http://git-scm.com/downloads.

	Open ‘git bash’ (For Windows, Start > Run, C:\Program Files (x86)\Git\bin\sh.exe --login -i)

	After the install has completed you can test whether Git has installed correctly by running the command git --version

	If this works successfully you will need to configure your Git instance by specifying your username and email address. This is done with the following two commands (Use your GitHub username and email address, if you already have a Github Account):

git config --global user.name "<username>"
git config --global user.email "<useremail>"

	To verify that the username and password was entered correctly, check by running

git config user.name
git config user.email

	Windows users should additionally execute the following so that the EOLs are not updated to Windows CRLF.

git config --global core.autocrlf false

Setting up Github

Estimated Time: 5 minutes

GitHub [https://github.com/] is a web-based Git repository hosting service. It offers all of the distributed revision control and source code management (SCM) functionality of Git as well as adding its own features. You can create projects and repositories for you and your teams’ need.

Complete the following steps to download and configure Bevel repository on your local machine.

	If you already have an account from previously, you can use the same account. If you don’t have an account, create one.

	Go to bevel [https://github.com/hyperledger/bevel] on GitHub and click Fork button on top right. This will create a copy of the repo to your own GitHub account.

	In git bash, write and execute the command:

ssh-keygen -q -N "" -f ~/.ssh/gitops

This generates an SSH key-pair in your user/.ssh directory: gitops (private key) and gitops.pub (public key).

	Add the public key contents from gitops.pub (starts with ssh-rsa) as an Access Key (with read-write permissions) in your Github repository by following this guide [https://help.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account].

	Execute the following command to add the key to your ssh-agent

eval "$(ssh-agent)"
ssh-add ~/.ssh/gitops

	Create a project directory in your home directory and clone the forked repository to your local machine.

mkdir ~/project
cd ~/project
git clone git@github.com:<githubuser>/bevel.git

	Checkout the develop branch.

cd bevel
git checkout develop

NOTE: If you have 2-Factor Authentication enabled on your GitHub account, you have to use GitHub token. Otherwise, password is fine.

 How To Generate GitHub Token
	On GitHub page, click your profile icon and then click Settings.

	On the sidebar, click Developer settings.

	On the sidebar, click Personal access tokens.

	Click Generate new token.

	Add a token description, enable suitable access and click Generate token.

	Copy the token to a secure location or password management app.

For security reasons, after you leave the page, you can no longer see the token again.

Setting up Docker

Estimated Time: 10 minutes

Install Docker Toolbox [https://docs.docker.com/toolbox/overview/] to make sure your local environment has the capbility to execute docker commands.
You can check the version of Docker you have installed with the following
command from a terminal prompt:

docker --version

NOTE: For Windows, you MUST use Docker Toolbox with VirtualBox. Do not use Docker Desktop for Windows. Also HyperV should be DISABLED for Mac and Windows.

Setting up HashiCorp Vault

Estimated Time: 15 minutes

We need Hashicorp Vault [https://www.vaultproject.io/] for the certificate and key storage.

	To install the precompiled binary, download [https://www.vaultproject.io/downloads/] the appropriate package for your system.

	Once the zip is downloaded, unzip it into any directory. The vault binary inside is all that is necessary to run Vault (or vault.exe for Windows). Any additional files, if any, aren’t required to run Vault.

	Create a directory project/bin and copy the binary there. Add project/bin directory to your PATH. Run following from git bash.

mkdir ~/project/bin
mv vault.exe ~/project/bin
export PATH=~/project/bin:$PATH

	Create a config.hcl file in the project directory with the following contents (use a file path in the path attribute which exists on your local machine)

ui = true
storage "file" {
 path = "~/project/data"
}
listener "tcp" {
 address = "0.0.0.0:8200"
 tls_disable = 1
}

	Start the Vault server by executing (this will occupy one terminal). Do not close this terminal.

vault server -config=config.hcl

	Open browser at http://localhost:8200/. And initialize the Vault by providing your choice of key shares and threshold. (below example uses 1)
[image: ../_images/vault-init.png]

	Click Download Keys or copy the keys, you will need them. Then click Continue to Unseal. Provide the unseal key first and then the root token to login.

	In a new terminal, execute the following (assuming vault is in your PATH):

export VAULT_ADDR='http://<Your Vault local IP address>:8200' #e.g. http://192.168.0.1:8200
export VAULT_TOKEN="<Your Vault root token>"

enable Secrets v1
vault secrets enable -version=1 -path=secret kv

Setting up Minikube

Estimated Time: 15 minutes

For development environment, minikube can be used as the Kubernetes cluster on which the DLT network will be deployed.

	Follow platform specific instructions [https://kubernetes.io/docs/tasks/tools/install-minikube/] to install minikube on your local machine. Also install Virtualbox [https://www.virtualbox.org/wiki/Downloads] as the Hypervisor. (If you already have HyperV it should be removed or disabled.)

	Minikube is also a binary, so move it into your ~/project/bin directory as it is already added to PATH.

	Configure minikube to use 4GB memory and default kubernetes version

minikube config set memory 4096
minikube config set kubernetes-version v1.19.15

	Then start minikube. This will take longer the first time.

minikube start --vm-driver=virtualbox

	Check status of minikube by running

minikube status

The Kubernetes config file is generated at ~/.kube/config

	To stop (do not delete) minikube execute the following

minikube stop

Now your development environment is ready!

NOTE: Minikube uses port in range 30000-32767. If you would like to change it, use the following command:

minikube start --vm-driver=virtualbox --extra-config=apiserver.service-node-port-range=15000-20000

Troubleshooting

At Step 5, if you get the following error:

2020-03-10T17:00:21.664Z [ERROR] core: failed to initialize barrier: error="failed to persist keyring: mkdir /project: permission denied"

Update the path in Vault config.hcl to absolute path:

storage "file" {
 path = "/full/path/to/project/vault"
}

For example, /home/users/Desktop/project/vault.

 Running Bevel DLT network on Minikube

Running Bevel DLT network on Minikube

Pre-requisites

Before proceeding, first make sure that you’ve completed Developer Pre-requisites.

Clone forked repo

	If you have not already done so, fork bevel [https://github.com/hyperledger/bevel] and clone the forked repo to your machine.

cd ~/project
git clone git@github.com:<githubuser>/bevel.git

	Add a “local” branch to your machine

cd ~/project/bevel
git checkout -b local
git push --set-upstream origin local

Update kubeconfig file

	Create a build folder inside your Bevel repository:

cd ~/project/bevel
mkdir build

	Copy ca.crt, client.key, client.crt from ~/.minikube to build:

cp ~/.minikube/ca.crt build/
cp ~/.minikube/client.key build/
cp ~/.minikube/client.crt build/

	Copy ~/.kube/config file to build:

cp ~/.kube/config build/

	Open the above config file and remove the paths for certificate-authority, client-certificate and client-key as in the figure below.

[image: ../_images/minikube-config.jpg]

NOTE: If you ever delete and recreate minikube, the above steps have to be repeated.

	Copy gitops file from ~/.ssh to build. (This is the private key file which you used to authenticate to your GitHub in pre-requisites)

cp ~/.ssh/gitops build/

Additional Windows configurations

	Ensure that you have set the following git config before cloning the repo.

git config --global core.autocrlf false

	If not, update the EOL to LF for platforms/hyperledger-fabric/scripts/*.sh files.

	Execute following to correctly set docker environment.

eval $('docker-machine.exe' env)

[bookmark: windows_mount]

	Mount windows local folder (bevel folder) to VirtualBox docker VM (the machine named “default” by default) from right-click menu, Settings -> Shared Folders. All paths in network.yaml should be the mounted path. Shut down and restart the “default” machine after this.

[image: ../_images/virtualbox-mountfolder.png]

Edit the configuration file

	Choose the DLT/Blockchain platform you want to run and copy the relevant sample network.yaml to build folder; rename it to network.yaml.

cd ~/project/bevel
cp platforms/hyperledger-fabric/configuration/samples/network-minikube.yaml build/network.yaml

	Update Docker configurations:

docker:
 url: "ghcr.io/hyperledger"
 # Comment username and password as it is public repo
 #username: "<your docker username>"
 #password: "<your docker password/token>"

	For each organization, update ONLY the following and leave everything else as is:

vault:
 url: "http://<Your Vault local IP address>:8200" # Use the local IP address rather than localhost e.g. http://192.168.0.1:8200
 root_token: "<your vault_root_token>"
gitops:
 git_url: "<https/ssh url of your forked repo>" #e.g. "https://github.com/hyperledger/bevel.git"
 git_repo: "<https url of your forked repo without the https://>" #e.g. "github.com/hyperledger/bevel.git"
 username: "<github_username>"
 password: "<github token/password>"
 email: "<github_email>"

If you need help, you can use each platform’s sample network-minikube.yaml:

	For Fabric, use platforms/hyperledger-fabric/configuration/samples/network-minikube.yaml

	For Quorum, use platforms/quorum/configuration/samples/network-minikube.yaml

	For Corda, use platforms/r3-corda/configuration/samples/network-minikube.yaml

And simply replace the placeholder values.

NOTE: If you have 2-Factor Authentication enabled on your GitHub account, you have to use GitHub token. Otherwise, password is fine.

 How To Generate GitHub Token
	On GitHub page, click your profile icon and then click Settings.

	On the sidebar, click Developer settings.

	On the sidebar, click Personal access tokens.

	Click Generate new token.

	Add a token description, enable suitable access and click Generate token.

	Copy the token to a secure location or password management app.

For security reasons, after you leave the page, you can no longer see the token again.

	Deploying the sample “supplychain” chaincode is optional, so you can delete the “chaincode” section. If deploying chaincode, update the following for the peers.

chaincode:
 repository:
 username: "<github_username>"
 password: "<github_token>"

Execute

Make sure that Minikube and Vault server are running. Double-check by running:

minikube status
vault status

Now run the following to deploy Bevel Fabric on minikube:

docker run -it -v $(pwd):/home/bevel/ --network="host" ghcr.io/hyperledger/bevel-build:latest

Windows users should use following (make sure that the local volume was mounted as per this step):

docker run -it -v /bevel:/home/bevel/ --network="host" ghcr.io/hyperledger/bevel-build:latest

Meanwhile you can also check if pods are being deployed:

kubectl get pods --all-namespaces -w

NOTE: If you need public address for nodes in your network.yaml file, you can use the output of minikube ip.

NOTE. baf-build image is using jdk14 but Corda and Corda Enterprise requires jdk8. In this case, you can use the prebuild image tag jdk8 ghcr.io/hyperledger/bevel-build:jdk8-latest

Troubleshooting

Failed to establish a new connection: [Errno 111] Connection refused

This is because you have re-created minikube but have not updated K8s config file. Repeat “Update kubeconfig file” steps 3 - 4 and try again.

kubernetes.config.config_exception.ConfigException: File does not exists: /Users/.minikube/ca.crt

This is because you have not removed the absolute paths to the certificates in config file. Repeat “Update kubeconfig file” step 4 and try again.

error during connect: Get http://%2F%2F.%2Fpipe%2Fdocker_engine/v1.40/version: open //./pipe/docker_engine: The system cannot find the file specified. In the default daemon configuration on Windows, the docker client must be run elevated to connect. This error may also indicate that the docker daemon is not running

This is because docker isn’t running. To start it, just close all the instances of Docker Quickstart Terminal and open again.

ERROR! the playbook: /home/bevel/platforms/shared/configuration/site.yaml could not be found

This is because the bevel repository isn’t mounted to the default VM. Check this step.

 DLT Blockchain Network deployment using Docker

DLT Blockchain Network deployment using Docker

Hyperledger Bevel is targeted for Production systems, but for quick developer deployments, you can create the containerized Ansible controller to deploy the dev DLT/Blockchain network.

Prerequisites

Follow instructions to install and configure common prerequisites. In summary, you should have details of the following:

	A machine (aka host machine) on which you can run docker commands i.e. which has docker command line installed and is connected to a docker daemon.

	At least one Kubernetes cluster (with connectivity to the host machine).

	At least one Hashicorp Vault server (with connectivity to the host machine).

	Read-write access to the Git repo (either ssh private key or https token).

Steps to use the bevel-build container

	Clone the git repo to host machine, call this the project folder

git clone https://github.com/hyperledger/bevel

	Depending on your platform of choice, there can be some differences in the configuration file. Please follow platform specific links below to learn more on updating the configuration file.

	R3 Corda Configuration File

	Hyperledger Fabric Configuration File

	Hyperledger Indy Configuration File

	Quorum Configuration File

	Hyperledger Besu Configuration File

	Create a build folder in the project folder; this build folder should have the following files:

a) K8s config file as configb) Network specific configuration file as network.yamlc) If using SSH for Gitops, Private key file which has write-access to the git repo

Screen shot of the folder structure is below:

[image: ../_images/DockerBuildFolder.png]

	Ensure the configuration file (./build/network.yaml) has been updated with the DLT network that you want to configure.

	Run the following command to run the provisioning scripts, the command needs to be run from the project folder. The command also binds and mounts a volume, in this case it binds the repository

docker run -it -v $(pwd):/home/bevel/ --network="host" ghcr.io/hyperledger/bevel-build:latest

For Corda use jdk8 version
docker run -it -v $(pwd):/home/bevel/ --network="host" ghcr.io/hyperledger/bevel-build:jdk8-latest

	In case you have failures and need to debug, login to the bash shell

docker run -it -v $(pwd):/home/bevel/ --network="host" ghcr.io/hyperledger/bevel-build:latest bash

go to bevel directory
cd bevel
Run the provisioning scripts
ansible-playbook platforms/shared/configuration/site.yaml -e "@./build/network.yaml"

 Common Configurations

Common Configurations

Hyperledger Bevel installs the common pre-requisites when the site.yaml playbook is run. To read more about setting up
DLT/Blockchain networks, refer Setting up a Blockchain/DLT network.

Following playbooks can be executed independently to setup the enviornment and can be found here [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration]

	enviornment-setup.yaml
Playbook enviornment-setup.yaml executes the roles which has tasks to install the binaries for:

	kubectl

	helm

	vault client

	aws-authenticator

	kubernetes-env-setup.yaml
Playbook kubernetes-env-setup.yaml executes the roles which has tasks to configure the following on each Kubernetes cluster:

	flux

	ambassador (if chosen)

	haproxy-ingress (if chosen)

All the common Ansible roles can be found at platforms/shared/configuration/roles [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/roles]

	setup/ambassador

	setup/aws-auth

	setup/aws-cli

	setup/flux

	setup/haproxy-ingress

	setup/helm

	setup/kubectl

	setup/vault

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/roles/] for detailed information on each of these roles.

 Corda Configurations

Corda Configurations

In Hyperledger Bevel project, ansible is used to automate the certificate generation, putting them in vault and generate value files, which are then pushed to the repository for deployment, using GitOps. This is achieved using Ansible playbooks.
Ansible playbooks contains a series of roles and tasks which run in sequential order to achieve the automation.

/r3-corda
|-- charts
| |-- doorman
| |-- doorman-tls
| |-- h2
| |-- h2-addUser
| |-- h2-password-change
| |-- mongodb
| |-- mongodb-tls
| |-- nms
| |-- nms-tls
| |-- node
| |-- node-initial-registration
| |-- notary
| |-- notary-initial-registration
| |-- storage
|-- images
|-- configuration
| |-- roles/
| |-- samples/
| |-- playbook(s)
| |-- openssl.conf
|-- releases
| |-- dev/
|-- scripts

For R3-Corda, the ansible roles and playbooks are located at /platforms/r3-corda/configuration/
Some of the common roles and playbooks between Hyperledger-Fabric, Hyperledger-Indy, Hyperledger-Besu, R3 Corda and Quorum are located at /platforms/shared/configurations/

Roles for setting up Corda Network

Roles in ansible are a combination of logically inter-related tasks.

Below is the single playbook that you need to execute to setup complete corda network.

deploy_network

This is the main ansible playbook which call all the roles in below sequence to setup corda network.

	Create Storage Class

	Create namespace and vault auth

	Deploy Doorman service node

	Deploy Networkmap service node

	Check that network service uri are reachable

	Deploy notary

	Deploy nodes

	Remove build directory

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda/configuration] for detailed information.

Below are the roles that deploy_network playbook calls to complete the setup process.

setup/nms

	Perform all the prerequisites (namespace, Vault auth, rbac, imagepullsecret)

	Create nms helm value files

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda/configuration/roles/setup/nms] for detailed information.

setup/doorman

	Perform all the prerequisites (namespace, Vault auth, rbac, imagepullsecret)

	Create doorman and mongodb helm value files

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda/configuration/roles/setup/doorman] for detailed information.

create/certificates

	Generate root certificates for doorman and nms

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda/configuration/roles/create/certificates] for detailed information.

setup/notary

	Perform all the prerequisites (namespace, Vault auth, rbac, imagepullsecret)

	Get crypto from doorman/nms, store in Vault

	Create notary db helm value files

	Create notary initial registration helm value files

	Create notary value files

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda/configuration/roles/setup/notary] for detailed information.

setup/node

	Perform all the prerequisites (namespace, Vault auth, rbac, imagepullsecret)

	Get crypto from doorman/nms, store in Vault

	Create node db helm value files

	Create node initial registration helm value files

	Create node value files

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda/configuration/roles/setup/node] for detailed information.

deploy/cordapps

	Deploy cordapps into each node and notary

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda/configuration/roles/deploy/cordapps] for detailed information.

setup/springboot_services

	Create springboot webserver helm value files for each node

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda/configuration/roles/setup/springboot_services] for detailed information.

setup/get_crypto

	Ensure admincerts directory exists

	Save the cert file

	Save the key file

	Save the root keychain

	Save root cert

	Save root key

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda/configuration/roles/setup/get_crypto] for detailed information.

 Corda Enterprise Configurations

Corda Enterprise Configurations

In Hyperledger Bevel project, Ansible is used to automate the certificate generation, putting them in vault and generate value files, which are then pushed to the git repository for deployment, using GitOps. This is achieved using Ansible playbooks.
Ansible playbooks contains a series of roles and tasks which run in sequential order to achieve the automation.
For R3-Corda Enterprise, the ansible roles and playbooks are located at platforms/r3-corda-ent/configuration/
Some of the common roles and playbooks between Hyperledger-Fabric, Hyperledger-Indy, Hyperledger-Besu, R3 Corda and Quorum are located at platforms/shared/configurations/

platforms/r3-corda-ent/configuration
├── deploy-network.yaml
├── deploy-nodes.yaml
├── openssl.conf
├── README.md
├── reset-network.yaml
├── roles
│ ├── create
│ │ ├── certificates
│ │ ├── k8_component
│ │ ├── namespace_serviceaccount
│ │ └── storageclass
│ ├── delete
│ │ ├── flux_releases
│ │ ├── gitops_files
│ │ └── vault_secrets
│ ├── helm_component
│ │ ├── Readme.md
│ │ ├── tasks
│ │ ├── templates
│ │ └── vars
│ └── setup
│ ├── auth
│ ├── bridge
│ ├── cenm
│ ├── credentials
│ ├── float
│ ├── float-environment
│ ├── gateway
│ ├── get_crypto
│ ├── idman
│ ├── nmap
│ ├── node
│ ├── node_registration
│ ├── notary
│ ├── notary-initial-registration
│ ├── pki-generator
│ ├── pki-generator-node
│ ├── signer
│ ├── tlscerts
│ ├── vault_kubernetes
│ └── zone
└── samples
 ├── network-cordaent.yaml
│ ├── network-addNotary.yaml
 └── README.md

Playbooks for setting up Corda Enterprise Network

Below are the playbooks availabe for the network operations.

deploy_network.yaml

This is the main ansible playbook which call all the roles in below sequence to setup Corda Enterprise network.

	Remove build directory

	Create Storage Class

	Create namespace and vault auth

	Deploy CENM services

	Check that network service uri are reachable

	Deploy nodes

deploy_nodes.yaml

This ansible playbook should be used when deploying only the nodes. This can be used when the CENM Services are already up and managed by a different network.yaml. This calls the below supporting roles in sequence.

	Remove build directory

	Create Storage Class

	Create namespace and vault auth

	Check that network service uri are reachable

	Deploy nodes

reset_network.yaml

This ansible playbook is used when deleting the network. This calls the below supporting roles in sequence.

	Deletes the Gitops release files

	Deletes the Vault secrets and authpaths

	Uninstalls Flux

	Deletes the helm releases from Kubernetes

	Remove build directory

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration] for detailed information.

Roles defined for Corda Enterprise

Roles in ansible are a combination of logically inter-related tasks.
Below are the roles that are defined for Corda Enterprise.

create/certificates/cenm

	Creates the Ambassador Proxy TLS Certificates for CENM components

	Saves them to Vault

	Creates Kubernetes secrets to be used by Ambassador pods

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/create/certificates/cenm] for detailed information.

create/certificates/node

	Creates the Ambassador Proxy TLS Certificates for Corda Nodes

	Saves them to Vault

	Creates Kubernetes secrets to be used by Ambassador pods

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/create/certificates/node] for detailed information.

create/k8_component

	Creates various Kubernetes components based on the templates

	Checks-in to git repo

Add new tpl files in templates folder when defining new storageclass.

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/create/k8_component] for detailed information.

create/namespace_serviceaccount

	Creates the namespace, serviceaccounts and clusterrolebinding

	Checks-in to git repo

create/storageclass

	Creates the storageclass template with name “cordaentsc”

	Checks-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/create/storageclass] for detailed information.

delete/flux_releases

	Deletes all helmreleases in the namespace

	Deletes the namespace

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/delete/flux_releases] for detailed information.

delete/gitops_files

	Deletes all gitops files from release folder

	Checks-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/delete/gitops_files] for detailed information.

delete/vault_secrets

	Deletes all contents of Vault

	Deletes the related Kubernetes secrets

	Deletes Vault access policies

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/delete/vault_secrets] for detailed information.

helm_component

	Creates various Helmrelease components based on the templates

	Performs helm lint (when true)

Most default values are in the tpl files in templates folder. If any need to be changed, these tpl files need to be edited.

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/helm_component] for detailed information.

setup/auth

	Wait for pki-generator job to “Complete”

	Create helmrelease files for Auth component

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/auth] for detailed information.

setup/bridge

	Create helmrelease files for Bridge component

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/bridge] for detailed information.

setup/cenm

	Checks all the prerequisite namespaces and serviceaccounts are created

	Creates vault access for cenm organization

	Calls setup/pki-generator role to generate network crypto.

	Calls setup/auth role to generate network crypto.

	Calls setup/gateway role to generate network crypto.

	Calls setup/zone role to generate network crypto.

	Calls setup/signer role to deploy signer service.

	Calls setup/idman role to deploy idman service.

	Calls setup/nmap role to deploy nmap service.

	Calls setup/notary role to deploy notary service.

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/cenm] for detailed information.

setup/credentials

	Writes keystore, truststore, ssl passwords for CENM services

	Writes node keystore, node truststore, network root-truststore passwords for CENM services

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/credentials] for detailed information.

setup/float

	Create helmrelease files for Float component

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/float] for detailed information.

setup/gateway

	Wait for pki-generator job to “Complete”

	Create gateway ambassador certificates

	Create helmrelease files for Gateway component

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/gateway] for detailed information.

setup/get_crypto

	Saves the Ambassador cert and key file to local file from Vault when playbook is re-run.

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/get_crypto] for detailed information.

setup/idman

	Wait for Signer pod to be “Running”

	Creates Ambassador certs by calling create/certificates/cenm role

	Create idman value files

	Check-in to git repo

setup/nmap

	Wait for PKI Job to “Complete” if certificates are not on Vault

	Creates Ambassador certs by calling create/certificates/cenm role

	Gets network-root-truststore.jks from Vault to save to local

	Create Notary-registration Job if not done already

	Wait forNotary-registration Job to “Complete” if not done already

	Create nmap value files

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/nmap] for detailed information.

setup/node

	Wait for all the prerequisites (namespace, Vault auth, rbac, imagepullsecret)

	Create Vault access using setup/vault_kubernetes role

	Create ambassador certificates by calling create/certificates/node

	Save idman/networkmap tls certs to Vault for this org

	Create node initial registration by calling setup/node_registration role

	Create node value files

	Create bridge, if enabled, by calling setup/bridge

	Create float, if enabled, by calling setup/float

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/node] for detailed information.

setup/node_registration

	Create node db helm value files

	Create node initial registration helm value files, if not registered already

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/node_registration] for detailed information.

setup/notary

	Wait for networkmap pod to be “Running”

	Create ambassador certificates by calling create/certificates/cenm

	Create notary value files

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/notary] for detailed information.

setup/notary-initial-registration

	Wait for idman pod to be “Running”

	Create notary db helm value files

	Create notary initial registration helm value files, if not registered already

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/notary-initial-registration] for detailed information.

setup/pki-generator

	Create pki-generator value files, if values are not in Vault

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/pki-generator] for detailed information.

setup/pki-generator-node

	Create pki-generator value files, if values are not in Vault

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/pki-generator-node] for detailed information.

setup/signer

	Wait for pki-generator Job to be “Completed”

	Create signer value files

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/signer] for detailed information.

setup/tlscerts

	Copies the idman/nmap certificates and truststore to each node’s Vault

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/tlscerts] for detailed information.

setup/vault_kubernetes

	Creates vault auth path if it does not exist

	Gets Kubernetes CA certs

	Enables Kubernetes and Vault authentication

	Creates Vault policies if they do not exist

	Creates docker credentials if they do not exist

If the Vault policies need to be changed, then this role will need to be edited.

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/vault_kubernetes] for detailed information.

setup/zone

	Wait for pki-generator job to “Complete”

	Create zone helmrelease files

	Check-in to git repo

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/configuration/roles/setup/zone] for detailed information.

 Fabric Configurations

Fabric Configurations

In Hyperledger Bevel project, ansible is used to automate the certificate generation, putting them in vault and generate value files, which are then pushed to the repository for deployment, using GitOps. This is achieved using Ansible playbooks.
Ansible playbooks contains a series of roles and tasks which run in sequential order to achieve the automation.

/hyperledger-fabric
|-- charts
| |-- ca
| |-- catools
| |-- zkkafka
| |-- orderernode
| |-- peernode
| |-- create_channel
| |-- join_channel
| |-- install_chaincode
| |-- instantiate_chaincode
| |-- upgrade_chaincode
|-- images
|-- configuration
| |-- roles/
| |-- samples/
| |-- playbook(s)
| |-- openssl.conf
|-- releases
| |-- dev/
|-- scripts

For Hyperledger-Fabric, the ansible roles and playbooks are located at /platforms/hyperledger-fabric/configuration/
Some of the common roles and playbooks between Hyperledger-Fabric, Hyperledger-Indy, Hyperledger-Besu, R3 Corda and Quorum are located at /platforms/shared/configurations/

Roles for setting up Fabric Network

Roles in ansible are a combination of logically inter-related tasks.

Below is the single playbook that you need to execute to setup complete fabric network.

create/anchorpeer

	Call nested_anchorpeer for each organization

	Check join channel job is done

	Creating value file of anchor peer for {{ channel_name }}

	Git Push

Follow Readme [https://github.com/hyperledger/bevel/blob/main/platforms/hyperledger-fabric/configuration/roles/create/anchorpeer/] for detailed information.

create/ca_server

	Check if CA certs already created

	Ensures crypto dir exists

	Get CA certs and key

	Generate the CA certificate

	Copy the crypto material to Vault

	Check if CA admin credentials are already created

	Write the CA server admin credentials to Vault

	Check Ambassador cred exists

	Create the Ambassador credentials

	Create CA server values for Orderer

	Create CA server values for Organisations

	Git Push

Follow Readme [https://github.com/hyperledger/bevel/blob/main/platforms/hyperledger-fabric/configuration/roles/create/ca-server/] for detailed information.

create/ca_tools

	Check CA-server is available

	Create CA-tools Values file

	Git Push

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/ca-tools] for detailed information.

create/chaincode/install

	Create value file for chaincode installation

	Check/Wait for anchorpeer update job

	Check for install-chaincode job

	Write the git credentials to Vault

	Create value file for chaincode installation (nested)

	Git Push

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/chaincode/install] for detailed information.

create/chaincode/instantiate

	Create value file for chaincode instantiation

	Check/Wait for install-chaincode job

	Check for instantiate-chaincode job

	Create value file for chaincode instantiaiton (nested)

	Git Push

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/chaincode/instantiate] for detailed information.

create/chaincode/invoke

	Create value file for chaincode invocation

	Check/Wait for install-chaincode job

	Create value file for chaincode invocation (nested)

	Git Push

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/chaincode/invoke] for detailed information.

create/chaincode/upgrade

	Check/Wait for install-chaincode job

	Create value file for chaincode upgrade

	Git Push

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/chaincode/upgrade/tasks] for detailed information.

create/channel_artifacts

	Check configtxgen

	Geting the configtxgen binary tar

	Unzipping the downloaded file

	Moving the configtxgen from the extracted folder and place in it path

	Creating channel-artifacts folder

	Write BASE64 encoded genesis block to Vault

	Remove old channel block

	Creating channels

	Creating Anchor artifacts

	Creating JSON configration for new organization

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/channel_artifacts] for detailed information.

create/genesis

	Remove old genesis block

	Creating genesis block

	Write genesis block to Vault

Follow README [https://github.com/hyperledger/bevel/tree/develop/platforms/hyperledger-fabric/configuration/roles/create/genesis] for more information.

create/channels

	Call valuefile when participant is creator

	Check orderer pod is up

	Check peer pod is up

	Create Create_Channel value file

	Git Push

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/channels] for detailed information.

create/channels_join

	Call nested_channel_join for each peer

	Check create channel job is done

	“join channel {{ channel_name }}”

	Git Push

	Call check for each peer

	Check join channel job is done

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/channels_join] for detailed information.

create/configtx

	Remove old configtx file

	Create configtx file

	Adding init patch to configtx.yaml

	Adding organization patch to configtx.yaml

	Adding orderer patch to configtx.yaml

	Adding profile patch to configtx.yaml

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/configtx] for detailed information.

create/crypto/orderer

	Call orderercheck.yaml for orderer

	Check if CA-tools is running

	Ensure CA directory exists

	Check if CA certs already created

	Check if CA key already created

	Call orderer.yaml for each orderer

	Check if orderer msp already created

	Get MSP info

	Check if orderer tls already created

	Ensure tls directory exists

	Get Orderer tls crt

	Create directory path on CA Tools

	Copy generate-usercrypto.sh to destination directory

	Changing the permission of msp files

	Copy the generate_crypto.sh file into the CA Tools

	Generate crypto material for organization orderers

	Copy the crypto config folder from the CA tools

	Copy the crypto material for orderer

	Check Ambassador cred exists

	Check if orderer ambassador secrets already created

	Get Orderer ambassador info

	Generate the orderer certificate

	Create the Ambassador credentials

	Copy the crypto material to Vault

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/crypto/orderer] for detailed information.

create/crypto/peer

	Check if CA-tools is running

	Ensure CA directory exists

	Check if CA certs already created

	Check if CA key already created

	Call peercheck.yaml for each peer

	Check if peer msp already created

	Get MSP info

	Call common.yaml for each peer

	Create directory path on CA Tools

	Copy generate-usercrypto.sh to destination directory

	Changing the permission of msp files

	Copy the generate_crypto.sh file into the CA Tools

	Generate crypto material for organization peers

	Copy the crypto config folder from the CA tools

	Check that orderer-certificate file exists

	Ensure orderer tls cert directory exists

	Copy tls ca.crt from auto-generated path to given path

	Check if Orderer certs exist in Vault

	Save Orderer certs if not in Vault

	Copy organization level certificates for orderers

	Check if admin msp already created

	Copy organization level certificates for orgs

	Check if user msp already created

	Copy user certificates for orgs

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/crypto/peer] for detailed information.

create/crypto_script

	Create generate_crypto script file for orderers

	Create generate_crypto script file for organizations

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/crypto_script] for detailed information.

create/namespace_vaultauth

	Check namespace is created

	Create namespaces

	Create vault reviewer service account for Organizations

	Create vault auth service account for Organizations

	Create clusterrolebinding for Orderers

	Git Push

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/namespace_vaultauth] for detailed information.

create/new_organisation/create_block

	Call nested_create_json for each peer

	Ensure channel-artifacts dir exists

	Remove old anchor file

	Creating new anchor file

	adding new org peers anchor peer information

	Create create-block-{{ channel_name }}.sh script file for new organisations

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/new_organization/create_block] for detailed information.

create/orderers

	create kafka clusters

	create orderers

	Git push

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/orderers] for detailed information.

create/peers

	Write the couchdb credentials to Vault

	Create Value files for Organization Peers

	Git Push

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/peers] for detailed information.

create/storageclass

	Check if storage class created

	Ensures “component_type” dir exists

	Create Storage class for Orderer

	Create Storage class for Organizations

	Git push

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/create/storageclass] for detailed information.

delete/flux_releases

	Deletes all the helmreleases CRD

	Remove all Helm releases

	Deletes namespaces

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/delete/flux_releases] for detailed information.

delete/gitops_files

	Delete release files

	Git push

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/delete/gitops_files] for detailed information.

delete/vault_secrets

	Delete docker creds

	Delete Ambassador creds

	Delete vault-auth path

	Delete Crypto for orderers

	Delete Crypto for peers

	Delete policy

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/delete/vault_secrets] for detailed information.

helm_component

	Ensures value directory exist

	Create value file

	Helm lint

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/helm_component] for detailed information.

k8_component

	Ensures value directory exist

	Create value file

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/k8_component] for detailed information.

setup/config_block/fetch

	Call nested_create_cli for the peer

	create valuefile for cli {{ peer.name }}-{{ participant.name }}-{{ channel_name }}

	Call nested_fetch_role for the peer

	start cli

	fetch and copy the configuration block from the blockchain

	delete cli

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/setup/config_block/fetch] for detailed information.

setup/config_block/sign_and_update

	Call valuefile when participant is new

	Check peer pod is up

	Call nested_sign_and_update for each peer

	create cli value files for {{peer.name}}-{{ org.name }} for signing the modified configuration block

	start cli {{peer.name}}-{{ org.name }}

	Check if fabric cli is present

	signing from the admin of {{ org.name }}

	delete cli {{ peer.name }}-{{ participant.name }}-cli

	Call nested_update_channel for the peer

	start cli for {{ peer.name }}-{{ org.name }} for updating the channel

	Check if fabric cli is present

	updating the channel with the new configuration block

	delete cli {{ peer.name }}-{{ participant.name }}-cli

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/setup/config_block/sign_and_update] for detailed information.

setup/get_ambassador_crypto

	Ensure ambassador secrets directory exists

	Save keys

	Save certs

	Ensure ambassador secrets directory exists

	Save keys

	Save certs

	signing from the admin of {{ org.name }}

	delete cli {{ peer.name }}-{{ participant.name }}-cli

	Call nested_update_channel for the peer

	start cli for {{ peer.name }}-{{ org.name }} for updating the channel

	Check if fabric cli is present

	updating the channel with the new configuration block

	delete cli {{ peer.name }}-{{ participant.name }}-cli

setup/get_crypto

	Ensure admincerts directory exists

	Save admincerts

	Ensure cacerts directory exists

	Save cacerts

	Ensure tlscacerts directory exists

	Save tlscacerts

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/setup/get_crypto] for detailed information.

setup/vault_kubernetes

	Check if namespace is created

	Ensures build dir exists

	Check if Kubernetes-auth already created for Organization

	Enable and configure Kubernetes-auth for Organization

	Get Kubernetes cert files for organizations

	Write reviewer token for Organisations

	Check if policy exists

	Create policy for Orderer Access Control

	Create policy for Organisations Access Control

	Write policy for vault

	Create Vault auth role

	Check docker cred exists

	Create the docker pull credentials

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-fabric/configuration/roles/setup/vault_kubernetes] for detailed information.

 Indy Configurations

Indy Configurations

In Hyperledger Bevel project, ansible is used to automate the certificate generation, putting them in vault and generate value files, which are then pushed to the repository for deployment, using GitOps. This is achieved using Ansible playbooks.
Ansible playbooks contains a series of roles and tasks which run in sequential order to achieve the automation.

/hyperledger-indy
|-- charts
| |-- indy-auth-job
| |-- indy-cli
| |-- indy-domain-genesis
| |-- indy-domain-genesis
| |-- indy-key-mgmt
| |-- indy-ledger-txn
| |-- indy-node
| |-- indy-pool-genesis
|-- images
|-- configuration
| |-- roles/
| |-- samples/
| |-- playbook(s)
| |-- cleanup.yaml
|-- releases
| |-- dev/
|-- scripts
| |-- indy_nym_txn
| |-- setup indy cluster

For Hyperledger-Indy, the ansible roles and playbooks are located at /platforms/hyperledger-indy/configuration/
Some of the common roles and playbooks between Hyperledger-Fabric, Hyperledger-Indy, Hyperledger-Besu, R3 Corda and Quorum are located at /platforms/shared/configurations/

Roles for setting up Indy Network

Roles in ansible are a combination of logically inter-related tasks.

To deploy the indy network, run the deploy-network.yaml in bevel\platforms\hyperledger-indy\configuration\
The roles included in the file are as follows.

check/crypto

This role is checking if all crypto jobs are completed and all crypto data are in Vault.

	Check if Indy Key management pod for trustee is completed

	Check if Indy Key management pod for stewards is completed

	Check if Indy Key management pod for endorser is completed

	Check trustee in vault

	Check stewards in vault

	Check endorser in vault

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/check/crypto] for detailed information.

check/k8_component

This role is used for waiting to kubernetes component.

	Wait for {{ component_type }} {{ component_name }}

	Wait for {{ component_type }} {{ component_name }}

	Wait for {{ component_type }} {{ component_name }}

	Get a ServiceAccount token for {{ component_name }}

	Store token

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/check/k8_component] for detailed information.

check/validation

This role checks for validation of network.yaml

	Check Validation

	Counting Genesis Steward

	Set trustee count to zero

	Counting trustees per Org

	Print error and end playbook if trustee count limit fails

	Counting Endorsers

	Print error abd end playbook if endorser count limit fails

	Reset Endorser count

	Print error and end playbook if genesis steward count limit fails

	Print error and end playbook if total trustee count limit fails

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/check/validation] for detailed information.

clean/flux

The role deletes the Helm release of Flux and git authentication secret from Kubernetes.

	Delete Helm release

	Wait for deleting of Helm release flux-{{ network.env.type }}

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/clean/flux] for detailed information.

clean/gitops

This role deletes all the gitops release files

	Delete release files

	Git push

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/clean/gitops] for detailed information.

clean/k8s_resourses

The role deletes all running Kubernetes components and Helm releases of all organizations.

	Remove all Helm releases of organization {{ organization }}

	Get all existing Cluster Role Bindings of organization {{ organization }}

	Remove an existing Cluster Role Binding of {{ organization }}

	Remove an existing Namespace {{ organization_ns }}

	Remove an existing Storage Class of {{ organization }}

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/clean/k8s_resourses] for detailed information.

clean/vault

This role get vault root token for organization and remove Indy crypto from vault

	Remove Indy Crypto of {{ organization }}

	Remove Policies of trustees

	Remove Policies of stewards

	Remove Policies of endorsers

	Remove Policies of {{ organization }}

	Remove Kubernetes Authentication Methods of {{ organization }}

	Remove Kubernetes Authentication Methods of {{ organization }} of trustees

	Remove Kubernetes Authentication Methods of {{ organization }} of stewards

	Remove Kubernetes Authentication Methods of {{ organization }} of endorsers

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/clean/vault] for detailed information.

create/helm_component/auth_job

This role create the job value file for creating Vault auth methods

This role creates the job value file for stewards

	Ensures {{ release_dir }}/{{ component_type }}/{{ component_name }} dir exists

	Get the kubernetes server url

	Trustee vault policy and role generating

	Stewards vault policy and role generating

	Endorser vault policy and role generating

	bevel-ac vault policy and role generating

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/create/helm_component/auth_job] for detailed information.

create/helm_component/crypto

This role create the job value file for creating Hyperledger Indy Crypto

This role creates the job value file for stewards

	Ensures {{ release_dir }}/{{ component_type }}/{{ component_name }} dir exists

	Trustee crypto generating

	Stewards crypto generating

	Endorser crypto generating

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/create/helm_component/crypto] for detailed information.

create/helm_component/domain_genesis

This role create the config map value file for storing domain genesis for Indy cluster.

This role creates the domain genesis file for organization

	Ensures {{ release_dir }}/{{ component_type }}/{{ component_name }} dir exists

	Generate domain genesis for organization

	create value file for {{ component_name }} {{ component_type }}

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/create/helm_component/domain_genesis] for detailed information.

create/helm_component/ledger_txn

This role create the job value file for Indy NYM ledger transactions

This role create the job value file for Indy NYM ledger transactions

	Ensures {{ release_dir }}/{{ component_type }}/{{ component_name }} dir exists

	Create HelmRelease file

	Ensures {{ release_dir }}/{{ component_type }}/{{ component_name }} dir exists

	Get identity data from vault

	Inserting file into Variable

	create value file for {{ new_component_name }} {{ component_type }}

	Delete file

	Helm lint

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/create/helm_component/ledger_txn] for detailed information.

create/helm_component/node

This role creates value file for Helm Release of stewards.

This role creates the job value file for stewards

	Ensures {{ release_dir }}/{{ component_name }} dir exists

	create value file for {{ component_name }} {{ component_type }}

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/create/helm_component/node] for detailed information.

create/helm_component/pool_genesis

This role creates the pool genesis file for organization

	Ensures {{ release_dir }}/{{ component_type }}/{{ component_name }} dir exists

	Generate pool genesis for organization

	create value file for {{ component_name }} {{ component_type }}

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/create/helm_component/pool_genesis] for detailed information.

create/imagepullsecret

This role creates secret in Kubernetes for pull docker images from repository.

This role creates the docker pull registry secret within each namespace

	Check for ImagePullSecret for {{ organization }}

	Create the docker pull registry secret for {{ component_ns }}

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/create/imagepullsecret] for detailed information.

create/k8_component

This role create value file for kubernetes component by inserted type.

This role generates value files for various k8 components

	Ensures {{ component_type_name }} dir exists

	create {{ component_type }} file for {{ component_type_name }}

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/create/k8_component] for detailed information.

create/namespace

This role creates value files for namespaces of organizations

	Check namespace is created

	Create namespaces

	Git Push

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/create/namespace] for detailed information.

create/serviceaccount/by_identities

This role creates value files for service account

	Check if service account for {{ component_name }} exists

	Create service account for {{ component_name }}

	Check cluster role binding for {{ component_name }}

	Get component_name to var

	Get organization and admin string to var

	Create cluster role binding for {{ component_name }}

	Create admin cluster role binding for {{ component_name }}

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/create/serviceaccount/by_identities] for detailed information.

create/serviceaccount/main

This role creates value files for service account for vault

	Create service account for trustees [{{ organization }}]

	Create service account for stewards [{{ organization }}]

	Create service account for endorsers [{{ organization }}]

	Create service account for organization [{{ organization }}]

	Create service account for read only public crypto [{{ organization }}]

	Push the created deployment files to repository

	Waiting for trustees accounts and cluster binding roles

	Waiting for stewards accounts and cluster binding roles

	Waiting for endorsers accounts and cluster binding roles

	Waiting for organization accounts and cluster binding roles

	Waiting for organization read only account and cluster binding role

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/create/serviceaccount/main] for detailed information.

create/serviceaccount/waiting

This role is waiting for create inserted ServiceAccounts or ClusterRoleBinding.

	Wait for creation for service account

	Wait for creation for cluster role binding

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/create/serviceaccount/waiting] for detailed information.

create/storageclass

This role creates value files for storage class

	Check if storageclass exists

	Create storageclass

	Push the created deployment files to repository

	Wait for Storageclass creation for {{ component_name }}

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/create/storageclass] for detailed information.

setup/auth_job

This role generates Helm releases of kubernetes jobs, which create Auth Methods into HashiCorp Vault for getting Vault token by Kubernetes Service Accounts

	Wait for namespace creation for stewards

	Create auth_job of stewards, trustee and endorser

	Push the created deployment files to repository

	Check if auth job finished correctly

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/setup/auth_job] for detailed information.

setup/crypto

This role creates the deployment files for indy crypto generate job and pushes them to repository

	Wait for namespace creation for stewards

	Create image pull secret for stewards

	Create crypto of stewards, trustee and endorser

	Push the created deployment files to repository

	Check Vault for Indy crypto

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/setup/crypto] for detailed information.

setup/domain_genesis

This role creates the values files for organizations domain genesis and pushes them to repository

	Create domain genesis

	Push the created deployment files to repository

	Wait until domain genesis configmap are created

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/setup/domain_genesis] for detailed information.

setup/endorsers

This role creates the deployment files for endorsers and pushes them to repository

	Wait for namespace creation

	Create image pull secret for identities

	Create Deployment files for Identities

	Select Admin Identity for Organisation {{ component_name }}

	Inserting file into Variable

	Calling Helm Release Development Role…

	Delete file

	Push the created deployment files to repository

	Wait until identities are creating

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/setup/endorsers] for detailed information.

setup/node

This role creates the deployment files for stewards and pushes them to repository

	Wait for namespace creation for stewards

	Create image pull secret for stewards

	Create steward deployment file

	Push the created deployment files to repository

	Wait until steward pods are running

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/setup/node] for detailed information.

setup/pool_genesis

This role creates the values files for organizations domain genesis and pushes them to repository

	Create pool genesis

	Push the created deployment files to repository

	Wait until pool genesis configmap are created

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/setup/pool_genesis] for detailed information.

setup/trustees

This role creates the deployment files for adding new trustees to existing network

	Wait for namespace creation

	Create image pull secret for identities

	Create Deployment files for Identities

	Select Admin Identity for Organisation {{ component_name }}

	Inserting file into Variable

	Calling Helm Release Development Role…

	Delete file

	Push the created deployment files to repository

	Wait until identities are creating

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/setup/trustees] for detailed information.

setup/stewards

This role creates the deployment files for adding new stewards to existing network

	Wait for namespace creation

	Create image pull secret for identities

	Create Deployment files for Identities

	Select Admin Identity for Organisation {{ component_name }}

	Inserting file into Variable

	Calling Helm Release Development Role…

	Delete file

	Push the created deployment files to repository

	Wait until identities are creating

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/setup/stewards] for detailed information.

setup/vault_kubernetes

This role setups communication between the vault and kubernetes cluster and install neccessary configurations.

	Check namespace is created

	Ensures build dir exists

	Check if Kubernetes-auth already created for Organization

	Enable and configure Kubernetes-auth for Organization

	Get Kubernetes cert files for organizations

	Write reviewer token for Organizations

	Check if policy exists

	Create policy for Access Control

	Write Policy to Vault

	Create Vault auth role

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/configuration/roles/setup/vault_kubernetes] for detailed information.

 Quorum Configurations

Quorum Configurations

In Hyperledger Bevel project, ansible is used to automate the certificate generation, putting them in vault and generate value files, which are then pushed to the repository for deployment, using GitOps. This is achieved using Ansible playbooks.
Ansible playbooks contains a series of roles and tasks which run in sequential order to achieve the automation.

/quorum
|-- charts
| |-- node_constellation
| |-- node_tessera
|-- images
|-- configuration
| |-- roles/
| |-- samples/
| |-- deploy-network.yaml
|-- releases
| |-- dev/
|-- scripts

For Quorum, the ansible roles and playbooks are located at /platforms/quorum/configuration/
Some of the common roles and playbooks between Hyperledger-Fabric, Hyperledger-Indy, Hyperledger-Besu, R3 Corda and Quorum are located at /platforms/shared/configurations/

Roles for setting up a Quorum Network

Roles in ansible are a combination of logically inter-related tasks.

To deploy the quorum network, run the deploy-network.yaml in bevel\platforms\quorum\configuration\
The roles included in the file are as follows:

**check/k8_component

This role checks for the k8s resources in the cluster

	Wait for {{ component_type }} {{ component_name }}

	Wait for {{ component_type }} {{ component_name }}
Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/create/check/k8_component] for detailed information.

**check/node_component

This role checks for the k8s resources in the cluster

	Wait for {{ component_type }} {{ component_name }}

	Wait for {{ component_type }} {{ component_name }}
Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/create/check/node_component] for detailed information.

create/certificates/ambassador

This role calls for ambassador certificate creation for each node.

	Create Ambassador certificates

	Ensure rootCA dir exists

	Ensure ambassador tls dir exists

	Check if certs already created

	Get root certs

	check root certs

	Generate CAroot certificate

	Check if ambassador tls already created

	Get ambassador tls certs

	Generate openssl conf file

	Generate ambassador tls certs

	Putting certs to vault

	Check Ambassador cred exists

	Create the Ambassador credentials
Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/create/certificates/ambassador] for detailed information.

create/crypto/constellation

This role creates crypto for constellation.

	Create Crypto material for each node for constellation

	Check tm key is present the vault

	Create build directory

	Generate Crypto for constellation

	Copy the crypto into vault

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/create/crypto/constellation] for detailed information.

create/crypto/ibft

This role creates crypto for ibft.

	Create crypto material for each peer with IBFT consensus

	Check if nodekey already present in the vault

	Create build directory if it does not exist

	Generate enode url for each node and create a geth account and keystore

	Copy the crypto material to Vault

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/create/crypto/ibft] for detailed information.

create/crypto/raft

This role creates crypto for raft.

	Create crypto material for each peer with RAFT consensus

	Check if nodekey already present in the vault

	Create build directory if it does not exist

	Generate crypto for raft consensus

	Copy the crypto material to Vault

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/create/crypto/raft] for detailed information.

create/crypto/tessera

This role creates crypto for tessera.

	Create tessera tm crypto material for each peer

	Check if tm key is already present in the vault

	Create build directory if it does not exist

	Check if tessera jar file exists

	Download tessera jar

	Generate node tm keys

	Copy the crypto material to Vault

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/create/crypto/tessera] for detailed information.

create/genesis_nodekey

This role creates genesis nodekey.

	Check if nodekey is present in vault

	Call nested check for each node

	Check if nodekey already present in the vault

	vault_check variable

	Fetching data of validator nodes in the network from network.yaml

	Get validator node data

	Create build directory if it does not exist

	Generate istanbul files

	Rename the directories created above with the elements of validator_node_list

	Delete the numbered directories

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/create/genesis_nodekey] for detailed information.

create/k8_component

This role creates deployment files for nodes, namespace storageclass, service accounts and clusterrolebinding. Deployment file for a node is created in a directory with name=nodeName, nodeName is stored in component_name

	“Ensures {{ release_dir }}/{{ component_name }} dir exists”

	create {{ component_type }} file for {{ component_name }}

	Helm lint

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/create/k8_component] for detailed information.

create/namespace_serviceaccount

This role creates the deployment files for namespaces, vault-auth, vault-reviewer and clusterrolebinding for each node

	Check if namespace exists

	Create namespace for {{ organisation }}

	Create vault auth service account for {{ organisation }}

	Create vault reviewer for {{ organisation }}

	Create clusterrolebinding for {{ organisation }}

	Push the created deployment files to repository

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/create/namespace_serviceaccount] for detailed information.

create/storageclass

This role creates value files for storage class

	Check if storageclass exists

	Create storageclass

	Push the created deployment files to repository

	Wait for Storageclass creation for {{ component_name }}

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/create/storageclass] for detailed information.

create/tessera

	Set enode_data_list to []

	Get enode data for each node of all organization

	Get enode data

	Check if enode is present in the build directory or not

	Create build directory if it does not exist

	Get the nodekey from vault and generate the enode

	Get enode_data

	Get validator node data

	Git Push

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/create/tessera] for detailed information.

helm_component

This role generates the value file for the helm releases.

	Ensures {{ values_dir }}/{{ name }} dir exists

	create value file for {{ component_name }}

	Helm lint

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/helm_component] for detailed information.

setup/bootnode

This role is used to setup bootnode.

	Check bootnode

	Check quorum repo dir exists

	Clone the git repo

	Make bootnode

	Create bin directory

	Copy bootnode binary to destination directory

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/setup/bootnode] for detailed information.

setup/constellation-node

This role is used to setup constellation-node.

	Register temporary directory

	check constellation

	Finding the release for os

	Release version

	Download the constellation-node binary

	Unarchive the file.

	Create the bin directory

	This task puts the constellation-node binary into the bin directory

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/setup/constellation-node] for detailed information.

setup/get_crypto

This role saves the crypto from Vault into ansible_provisioner.

	Ensure directory exists

	Save cert

	Save key

	Save root keychain

	Extracting root certificate from .jks

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/setup/get_crypto] for detailed information.

setup/geth

This role setups geth.

	Check geth

	Check quorum repo dir exists

	Clone the git repo

	Make geth

	Create bin directory

	Copy geth binary to destination directory

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/setup/geth] for detailed information.

setup/golang

This role setups geth.

	Register temporary directory

	Check go

	Download golang tar

	Extract the Go tarball

	Create bin directory

	Copy go binary to destination directory

	Test go installation

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/setup/golang] for detailed information.

setup/istanbul

This role setups instanbul.

	Register temporary directory

	Check istanbul

	Clone the istanbul-tools git repo

	Make istanbul

	Create bin directory

	Copy istanbul binary to destination directory

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/setup/istanbul] for detailed information.

setup/vault_kubernetes

This role setups communication between the vault and kubernetes cluster and install neccessary configurations.

	Check namespace is created

	Ensures build dir exists

	Check if Kubernetes-auth already created for Organization

	Vault Auth enable for organisation

	Get Kubernetes cert files for organizations

	Write reviewer token

	Check if secret-path already created for Organization

	Create Vault secrets path

	Check if policy exists

	Create policy for Access Control

	Create Vault auth role

	Create the docker pull credentials

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/setup/vault_kubernetes] for detailed information.

delete/flux_releases

This role deletes the helm releases and uninstalls Flux

	Uninstall flux

	Delete the helmrelease for each peer

	Remove node helm releases

	Deletes namespaces

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/delete/flux_releases] for detailed information.

delete/gitops_files

This role deletes all the gitops release files

	Delete release files

	Delete release files (namespaces)

	Git Push

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/delete/gitops_files] for detailed information.

delete/vault_secrets

This role deletes the Vault configurations

	Delete docker creds

	Delete Ambassador creds

	Delete vault-auth path

	Delete Crypto material

	Delete Access policies

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/quorum/configuration/roles/delete/vault_secrets] for detailed information.

deploy-network.yaml

This playbook deploys a DLT/Blockchain network on existing Kubernetes clusters. The Kubernetes clusters should already be created and the infomation to connect to the clusters be updated in the network.yaml file that is used as an input to this playbook. It calls the following roles.

	create/namespace_serviceaccount

	create/storageclass

	setup/vault_kubernetes

	create/certificates/ambassador

	create/crypto/raft

	create/genesis_raft

	setup/istanbul

	create/genesis_nodekey

	create/crypto/ibft

	create/crypto/tessera

	create/crypto/constellation

	create/tessera

	create/constellation

reset-network.yaml

This playbook deletes the DLT/Blockchain network on existing Kubernetes clusters which has been created using Hyperledger Bevel. It calls the following roles. THIS PLAYBOOK DELETES EVERYTHING, EVEN NAMESPACES and FLUX.

	delete/vault_secrets

	delete/flux_releases

	delete/gitops_files

	Remove build directory

 Hyperledger Besu Configurations

Hyperledger Besu Configurations

In Hyperledger Bevel project, ansible is used to automate the certificate generation, put them in the vault and generate value files, which are then pushed to the repository for deployment, using GitOps. This is achieved using Ansible playbooks.
Ansible playbooks contains a series of roles and tasks which run in sequential order to achieve the automation.

/hyperledger-besu
|-- charts
| |-- node_orion
|-- images
|-- configurations
| |-- roles/
| |-- samples/
| |-- deploy-network.yaml
|-- releases
| |-- dev/
|-- scripts

For Hyperledger Besu, the ansible roles and playbooks are located at /platforms/hyperledger-besu/configuration/. Some of the common roles and playbooks between Hyperledger-Fabric, Hyperledger-Indy, Hyperledger-Besu, R3 Corda and Quorum are located at /platforms/shared/configurations/

Roles for setting up a Hyperledger Besu Network

Roles in ansible are a combination of logically inter-related tasks.

To deploy the Hyperledger-Besu network, run the deploy-network.yaml in bevel\platforms\hyperledger-besu\configuration\
The roles included in the files are as follows:

create/certificates/ambassador

This role calls for ambassador certificate creation for each node.

	Create Ambassador certificates

	Ensure rootCA dir exists

	Ensure ambassador tls dir exists

	Check if certs already created

	Get root certs

	check root certs

	Generate CAroot certificate

	Check if ambassador tls already created

	Get ambassador tls certs

	Generate openssl conf file

	Generate ambassador tls certs

	Putting certs to vault

	Check Ambassador cred exists

	Create the Ambassador credentials
Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-besu/configuration/roles/create/certificates/ambassador] for detailed information.

create/crypto/ibft

This role creates crypto for ibft.

	Create crypto material for each peer with IBFT consensus

	Check if nodekey already present in the vault

	Create build directory if it does not exist

	Generate enode url for each node and create a geth account and keystore

	Copy the crypto material to Vault

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-besu/configuration/roles/create/crypto/ibft] for detailed information.

create/crypto/clique

This role creates crypto for clique.

	Create crypto material for each peer with CLIQUE consensus

	Check if nodekey already present in the vault

	Create build directory if it does not exist

	Generate enode url for each node and create a geth account and keystore

	Copy the crypto material to Vault

Follow Readme [https://github.com/hyperledger/bevel/blob/main/platforms/hyperledger-besu/configuration/roles/create/crypto/clique] for detailed information.

create/k8_component

This role creates deployment files for nodes, namespace storageclass, service accounts and clusterrolebinding. Deployment file for a node is created in a directory with name=nodeName, nodeName is stored in component_name

	“Ensures {{ release_dir }}/{{ component_name }} dir exists”

	create {{ component_type }} file for {{ component_name }}

	Helm lint

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-besu/configuration/roles/create/k8_component] for detailed information.

create/namespace_serviceaccount

This role creates the deployment files for namespaces, vault-auth, vault-reviewer and clusterrolebinding for each node

	Check if namespace exists

	Create namespace for {{ organisation }}

	Create vault auth service account for {{ organisation }}

	Create vault reviewer for {{ organisation }}

	Create clusterrolebinding for {{ organisation }}

	Push the created deployment files to repository

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-besu/configuration/roles/create/namespace_serviceaccount] for detailed information.

create/storageclass

This role creates value files for storage class

	Check if storageclass exists

	Create storageclass

	Push the created deployment files to repository

	Wait for Storageclass creation for {{ component_name }}

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-besu/configuration/roles/create/storageclass] for detailed information.

setup/get_crypto

This role saves the crypto from Vault into ansible_provisioner.

	Ensure directory exists

	Save cert

	Save key

	Save root keychain

	Extracting root certificate from .jks

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-besu/configuration/roles/setup/get_crypto] for detailed information.

setup/vault_kubernetes

This role setups communication between the vault and kubernetes cluster and install neccessary configurations.

	Check namespace is created

	Ensures build dir exists

	Check if Kubernetes-auth already created for Organization

	Vault Auth enable for organisation

	Get Kubernetes cert files for organizations

	Write reviewer token

	Check if secret-path already created for Organization

	Create Vault secrets path

	Check if policy exists

	Create policy for Access Control

	Create Vault auth role

	Create the docker pull credentials

Follow Readme [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-besu/configuration/roles/setup/vault_kubernetes] for detailed information.

 Common Charts

Common Charts

 Corda Charts

Corda Charts

The structure below represents the Chart structure for R3 Corda components in Hyperledger Bevel
implementation.

/r3-corda
|-- charts
| |-- doorman
| |-- doorman-tls
| |-- h2
| |-- h2-addUser
| |-- h2-password-change
| |-- mongodb
| |-- mongodb-tls
| |-- nms
| |-- nms-tls
| |-- node
| |-- node-initial-registration
| |-- notary
| |-- notary-initial-registration
| |-- storage

Pre-requisites

helm to be installed and configured on the cluster.

doorman

About

This folder consists of Doorman helm charts which are used by the ansible playbooks for the deployment of Doorman component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/doorman
|-- templates
| |-- pvc.yaml
| |-- deployment.yaml
| |-- service.tpl
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Doorman implementation.

	This folder contains following template files for Doorman implementation

	deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment for Doorman. The file basically describes the container and volume specifications of the Doorman. The file defines container where doorman container is defined with corda image and corda jar details. The init container init-creds creates doorman db root password and user credentials at mount path, init-certificates init container basically configures doorman keys.jks by fetching certsecretprefix from the vault, change permissions init-containers provides permissions to base directory and db-healthcheck init-container checks for db is up or not.

	pvc.yaml:

This yaml is used to create persistent volumes claim for the Doorman deployment.A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
PersistentVolumes provide a way for users to ‘claim’ durable storage without having the information details of the particular cloud environment.
This file creates persistentVolumeClaim for Doorman pvc.

	service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment.
This service.yaml creates CA service endpoint. The file basically specifies service type and kind of service ports for doorman server.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

doorman-tls

About

This folder consists of Doorman helm charts which are used by the ansible playbooks for the deployment of Doorman component when TLS is on for the doorman. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/doorman-tls
|-- templates
| |-- pvc.yaml
| |-- deployment.yaml
| |-- service.tpl
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Doorman implementation.

	This folder contains following template files for Doorman implementation

	deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment for Doorman. The file basically describes the container and volume specifications of the Doorman. The file defines container where doorman container is defined with corda image and corda jar details. The init container init-creds creates doorman db root password and user credentials at mount path, init-certificates init container basically configures doorman keys.jks by fetching certsecretprefix from the vault, change permissions init-containers provides permissions to base directory and db-healthcheck init-container checks if db is up or not.

	pvc.yaml:

This yaml is used to create persistent volumes claim for the Doorman deployment. A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
PersistentVolumes provide a way for users to ‘claim’ durable storage without having the information details of the particular cloud environment.
This file creates persistentVolumeClaim for Doorman pvc.

	service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment.
This service.yaml creates CA service endpoint. The file basically specifies service type and kind of service ports for doorman server.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

nms

About

This folder consists of networkmapservice helm charts which are used by the ansible playbooks for the deployment of networkmapservice component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/nms
|-- templates
| |-- volume.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for nms implementation.

	This folder contains following template files for nms implementation

	deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment for NMS . The file basically describes the container and volume specifications of the NMS. The file defines containers where NMS container is defined with corda image and corda jar details. The init container init-certificates-creds creates NMS db root password and user credentials at mount path, init-certificates init container basically configures NMS keys.jks by fetching certsecretprefix from the vault, changepermissions init-containers provides permissions to base directory and db-healthcheck init-container checks for db is up or not.

	service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment.
This service.yaml creates nms service endpoint. The file basically specifies service type and kind of service ports for the nms server.

	volume.yaml:

This yaml is used to create persistent volumes claim for the nms deployment. A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
PersistentVolumes provide a way for users to ‘claim’ durable storage without having the information details of the particular cloud environment.
This file creates nms pvc for, the volume claim for nms.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

nms-tls

About

This folder consists of networkmapservice helm charts that establish a TLS connection with mongodb, which are used by the ansible playbooks for the deployment of networkmapservice component. This chart is deployed when TLS is on for nms. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/nms-tls
|-- templates
| |-- volume.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for nms implementation.

	This folder contains following template files for nms implementation

	deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment for NMS. The file basically describes the container and volume specifications of the NMS. The file defines containers where NMS container is defined with corda image and corda jar details. The init container init-certificates-creds creates NMS db root password and user credentials at mount path, init-certificates init container basically configures NMS keys.jks by fetching certsecretprefix from the vault, changepermissions init-containers provides permissions to base directory and db-healthcheck init-container checks for db is up or not.

	service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment.
This service.yaml creates nms service endpoint. The file basically specifies service type and kind of service ports for the nms server.

	volume.yaml:

This yaml is used to create persistent volumes claim for the nms deployment. A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
PersistentVolumes provide a way for users to ‘claim’ durable storage without having the information details of the particular cloud environment.
This file creates nms pvc for, the volume claim for nms.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

h2 (database)

About

This folder consists of H2 helm charts which are used by the ansible playbooks for the deployment of the H2 database. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/h2
|-- templates
| |-- pvc.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for H2 implementation.

	This folder contains following template files for H2 implementation

	deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment.For the H2 node, this file creates H2 deployment.

	service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment. This service.yaml creates H2 service endpoint

	pvc.yaml:

This yaml is used to create persistent volumes claim for the H2 deployment. A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
PersistentVolumes provide a way for users to ‘claim’ durable storage without having the information details of the particular cloud environment.
This file creates h2-pvc for , the volume claim for H2.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

h2-addUser

About

This folder consists of H2-adduser helm charts which are used by the ansible playbooks for the deployment of the Peer component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/h2-addUser
|-- templates
| |-- job.yaml
|-- Chart.yaml
|-- values.yaml

Pre-requisites

helm to be installed and configured

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for h2 add user implementation.

	This folder contains following template file for adding users to h2 implementation

	job.yaml:

The job.yaml file through template engine runs create h2-add-user container and thus runs newuser.sql to create users and create passwords for new users.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

h2-password-change

About

This folder consists of H2-password-change helm charts which are used by the ansible playbooks for the deployment of the Peer component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/h2-password-change
|-- templates
| |-- job.yaml
|-- Chart.yaml
|-- values.yaml

Pre-requisites

helm to be installed and configured

Charts description

templates

	This folder contains template structures which when combined with values ,will generate valid Kubernetes manifest files for h2 password change implementation.

	This folder contains following template file for changing h2 password implementation

	job.yaml:

The job.yaml file through template engine runs create h2-add-user container and thus runs newuser.sql to create users and create passwords for new users.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

mongodb

About

This folder consists of Mongodb helm charts which are used by the ansible playbooks for the deployment of the Mongodb component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/mongodb
|-- templates
| |-- pvc.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Mongodb implementation.

	This folder contains following template files for Mongodb implementation

	deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment.For the Mongodb node, this file creates Mongodb deployment.

	service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment. This service.yaml creates Mongodb service endpoint

	pvc.yaml:

This yaml is used to create persistent volumes claim for the Mongodb deployment. A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
PersistentVolumes provide a way for users to ‘claim’ durable storage without having the information details of the particular cloud enviornment.
This file creates mongodb-pvc for, the volume claim for mongodb.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

mongodb-tls

About

This folder consists of Mongodb helm charts which are used by the ansible playbooks for the deployment of the Mongodb component. It allows for TLS connection. When TLS is on for nms or doorman, this chart is deployed for them else mongodb chart is deployed. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/mongodb-tls
|-- templates
| |-- pvc.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Mongodb implementation.

	This folder contains following template files for Mongodb implementation

	deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment.For the Mongodb node, this file creates Mongodb deployment.

	service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment. This service.yaml creates Mongodb service endpoint

	pvc.yaml:

This yaml is used to create persistent volumes claim for the Mongodb deployment. A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
PersistentVolumes provide a way for users to ‘claim’ durable storage without having the information details of the particular cloud enviornment.
This file creates mongodb-pvc for, the volume claim for mongodb.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

node

About

This folder consists of node helm charts which are used by the ansible playbooks for the deployment of the corda node component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/node
|-- templates
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for R3 Corda node implementation.

	This folder contains following template files for node implementation

	deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment. For the corda node, this file creates a node deployment. The file defines containers where node container is defined with corda image and corda jar details and corda-logs container is used for logging purpose. The init container init-nodeconf defines node.conf file for node, init-certificates init container basically configures networkmap.crt, doorman.crt, SSLKEYSTORE and TRUSTSTORE at mount path for node by fetching certsecretprefix from the vault and init-healthcheck init-container checks for h2 database. Certificates and notary server database are defined on the volume mount paths.

	service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment.
This service.yaml creates node service endpoint.The file basically specifies service type and kind of service ports for the corda nodes.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

node-initial-registration

About

This folder contains node-initial-registration helm charts which are used by the ansible playbooks for the deployment of the install_chaincode component. The folder contains a templates folder, a chart file and the corresponding value file.

Folder Structure

/node-initial-registration
|-- templates
| |--job.yaml
| |--_helpers.tpl
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for node-initial-registration implementation.

	This folder contains following template files for node-initial-registration implementation

	job.yaml:It is used as a basic manifest for creating a Kubernetes deployment for initial node
registration. The file basically describes the container and volume specifications of the node. corda-node container is used for running corda jar.store-certs-in-vault container is used for putting certificate into the vault. init container is used for creating node.conf which is used by corda node, download corda jar, download certificate from vault,getting passwords of keystore from vault and also performs health checks

	_helpers.tpl:A place to put template helpers that you can re-use throughout the chart.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

notary

About

This folder consists of Notary helm charts, which are used by the ansible playbooks for the deployment of the Notary component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/notary
|-- templates
| |-- deployment.tpl
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Notary implementation.

	This folder contains following template files for Notary implementation

	deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment. For the corda notary, this file creates a notary deployment. The file defines containers where notary container is defined with corda image and corda jar details also registers the notary with nms and corda-logs container is used for logging purpose. The init container init-nodeconf defines node.conf file for notary, init-certificates init container basically configures networkmap.crt, doorman.crt, SSLKEYSTORE and TRUSTSTORE at mount path by fetching certsecretprefix from vault and db-healthcheck init-container checks for h2 database. Certificates and notary server database are defined on the volume mount paths.

	service.yaml

This template is used as a basic manifest for creating a service endpoint for our deployment.
This service.yaml creates Notary service endpoint. The file basically specifies service type and kind of service ports for Notary.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

notary-initial-registration

About

This folder consists of notary-initial-registration helm charts, which are used by the ansible playbooks for the deployment of the initial notary components. The folder contains a templates folder, a chart file and a corresponding value file.

Folder Structure

/notary-initial-registration
|-- templates
| |--job.yaml
| |--_helpers.tpl
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for registering notary components.

	This folder contains following template files for initializing notary implementation.

	job.yaml:

It is used as a basic manifest for creating a Kubernetes deployment for initial notary
registration. The file basically describes the container and volume specifications of the notary. corda-node container is used for running corda jar.store-certs-in-vault container is used for putting certificate into the vault. init container is used for creating node.conf which is used by corda node, download corda jar, download certificate from vault,getting passwords of keystore from vault and also performs health checks.

	_helpers.tpl:

A place to put template helpers that you can re-use throughout the chart.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

springbootwebserver

About

This folder consists of springbootwebserver helm charts which are used by the ansible playbooks for the deployment of the springbootwebserver component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/springbootwebserver
|-- templates
| |-- deployment.yaml
| |-- pvc.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for springbootwebserver implementation.

	This folder contains following template files for springbootwebserver implementation

	deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment. For the corda springbootwebserver, this file creates a springbootwebserver deployment. The file defines containers where springbootwebserver container is defined with corda image and app jar details and
the init container basically creates app.properties file, configures the vault with various vault parameters. Certificates and springbootwebserver database are defined on the volume mount paths.

	pvc.yaml:

This yaml is used to create persistent volumes claim for the springbootwebserver deployment. A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
PersistentVolumes provide a way for users to ‘claim’ durable storage without having the information details of the particular cloud enviornment.
This file creates springbootwebserver-pvc for , the volume claim for springbootwebserver.

	service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment.
This service.yaml creates springbootwebserver service endpoint.The file basically specifies service type and kind of service ports for the corda springbootwebserver.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

storage

About

This folder consists of storage helm charts, which are used by the ansible playbooks for the deployment of the storage component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/storage
|-- templates
| |-- storageclass.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for storageclass implementation.

	This folder contains following template files for storageclass implementation

	storageclass.yaml:
This yaml file basically creates storageclass. We define provisioner, storagename and namespace from value file.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

webserver Chart

About

This folder consists of webserver helm charts which are used by the ansible playbooks for the deployment of the webserver component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/webserver
|-- templates
| |-- pvc.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for webserver implementation.

	This folder contains following template files for webserver implementation

	deployment.yaml:

This file is used as a basic manifest for creating a Kubernetes deployment. For the webserver node, this file creates webserver deployment.

	service.yaml:

This template is used as a basic manifest for creating a service endpoint for our deployment. This service.yaml creates webserver service endpoint

	pvc.yaml:

This yaml is used to create persistent volumes claim for the webserver deployment. A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
PersistentVolumes provide a way for users to ‘claim’ durable storage without having the information details of the particular cloud enviornment.
This file creates webserver-pvc for, the volume claim for webserver.

	volume.yaml:

This yaml is used to create persistent volumes claim for the webserver deployment. A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
PersistentVolumes provide a way for users to ‘claim’ durable storage without having the information details of the particular cloud environment.
This file creates webserver pvc for, the volume claim for webserver.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

 Corda Enterprise Helm Charts

Corda Enterprise Helm Charts

Following are the helm charts used for R3 Corda Enterprise in Hyperledger Bevel.

platforms/r3-corda-ent/charts
├── auth
├── bridge
├── float
├── gateway
├── generate-pki
├── generate-pki-node
├── h2
├── idman
├── nmap
├── node
├── node-initial-registration
├── notary
├── notary-initial-registration
├── signer
└── zone

Pre-requisites

helm version 2.x.x to be installed and configured on the cluster.

Auth

About

This chart deploys the Auth component of Corda Enterprise Network Manager. The folder contents are below:

Folder Structure

├── auth
│ ├── Chart.yaml
│ ├── files
│ │ └── authservice.conf
│ ├── templates
│ │ ├── configmap.yaml
│ │ ├── deployment.yaml
│ │ ├── _helpers.tpl
│ │ ├── pvc.yaml
│ │ └── service.yaml
│ └── values.yaml

Charts description

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

files

	This folder contains the configuration files needed for auth.

	authservice.conf: The main configuration file for auth service.

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Auth Service implementation. This folder contains following template files:

	configmap.yaml: This creates a configmap of all the files from the files folder above.

	deployment.yaml: This creates the main Kubernetes deployment. It contains one init-container init-certificates to download the keys/certs from Vault, init-jwt container which generates the JWT signing key and one main containers which executes the auth service.

	_helpers.tpl: This is a helper file to add any custom labels.

	pvc.yaml: This creates the PVC used by auth service

	service.yaml: This creates the auth service endpoint.

values.yaml

	This file contains the default values for the chart.

Bridge

About

This chart deploys the Bridge component of Corda Enterprise filewall. The folder contents are below:

Folder Structure

├── bridge
│ ├── Chart.yaml
│ ├── files
│ │ └── firewall.conf
│ ├── templates
│ │ ├── configmap.yaml
│ │ ├── deployment.yaml
│ │ ├── _helpers.tpl
│ │ ├── pvc.yaml
│ │ └── service.yaml
│ └── values.yaml

Charts description

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

files

	This folder contains the configuration files needed for bridge.

	firewall.conf: The main configuration file for firewall.

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Corda Firewall implementation. This folder contains following template files:

	configmap.yaml: This creates a configmap of all the files from the files folder above.

	deployment.yaml: This creates the main Kubernetes deployment. It contains one init-container init-certificates to download the keys/certs from Vault, and one main containers which executes the firewall service.

	_helpers.tpl: This is a helper file to add any custom labels.

	pvc.yaml: This creates the PVC used by firwall

	service.yaml: This creates the firewall service endpoint.

values.yaml

	This file contains the default values for the chart.

Float

About

This chart deploys the Float component of Corda Enterprise filewall. The folder contents are below:

Folder Structure

├── float
│ ├── Chart.yaml
│ ├── files
│ │ └── firewall.conf
│ ├── templates
│ │ ├── configmap.yaml
│ │ ├── deployment.yaml
│ │ ├── _helpers.tpl
│ │ ├── pvc.yaml
│ │ └── service.yaml
│ └── values.yaml

Charts description

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

files

	This folder contains the configuration files needed for float.

	firewall.conf: The main configuration file for firewall.

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Corda Firewall implementation. This folder contains following template files:

	configmap.yaml: This creates a configmap of all the files from the files folder above.

	deployment.yaml: This creates the main Kubernetes deployment. It contains one init-container init-certificates to download the keys/certs from Vault, and one main containers which executes the firewall service.

	_helpers.tpl: This is a helper file to add any custom labels.

	pvc.yaml: This creates the PVC used by firwall

	service.yaml: This creates the firewall service endpoint.

values.yaml

	This file contains the default values for the chart.

Gateway

About

This chart deploys the Gateway service of Corda Enterprise Network Manager. The folder contents are below:

Folder Structure

├── gateway
│ ├── Chart.yaml
│ ├── files
│ │ ├── setupAuth.sh
│ │ └── gateway.conf
│ ├── templates
│ │ ├── configmap.yaml
│ │ ├── deployment.yaml
│ │ ├── job.yaml
│ │ ├── _helpers.tpl
│ │ ├── pvc.yaml
│ │ └── service.yaml
│ └── values.yaml

Charts description

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

files

	This folder contains the configuration files needed for gateway service.

	gateway.conf: The main configuration file for gateway.

	setupAuth.sh: The script to create users, groups and assign roles to groups for authentication.

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Corda Gateway service implementation. This folder contains following template files:

	configmap.yaml: This creates a configmap of all the files from the files folder above.

	deployment.yaml: This creates the main Kubernetes deployment. It contains one init-container init-certificates to download the keys/certs from Vault, and one main containers which executes the gateway service.

	job.yaml: This creates the main Kubernetes job. It contains one check-auth container which establishes connection with auth service, and one main container which executes the setupAuth script to create users, groups and assign roles to groups.

	_helpers.tpl: This is a helper file to add any custom labels.

	pvc.yaml: This creates the PVC used by gateway service

	service.yaml: This creates the gateway service endpoint.

values.yaml

	This file contains the default values for the chart.

Generate-pki

About

This chart deploys the Generate-PKI job on Kubernetes. The folder contents are below:

Folder Structure

├── generate-pki
│ ├── Chart.yaml
│ ├── files
│ │ └── pki.conf
│ ├── README.md
│ ├── templates
│ │ ├── configmap.yaml
│ │ ├── _helpers.tpl
│ │ └── job.yaml
│ └── values.yaml

Charts description

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

files

	This folder contains the configuration files needed for PKI.

	pki.conf: The main configuration file for generate-pki.

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for PKI job. This folder contains following template files:

	configmap.yaml: This creates a configmap of all the files from the files folder above.

	_helpers.tpl: This is a helper file to add any custom labels.

	job.yaml: This creates the main Kubernetes job. It contains a main container which runs the pkitool to generate the certificates and keystores, and a store-certs container to upload the certificates/keystores to Vault.

values.yaml

	This file contains the default values for the chart.

h2 (database)

About

This chart deploys the H2 database pod on Kubernetes. The folder contents are below:

Folder Structure

├── h2
│ ├── Chart.yaml
│ ├── templates
│ │ ├── deployment.yaml
│ │ ├── pvc.yaml
│ │ └── service.yaml
│ └── values.yaml

Charts description

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for H2 implementation. This folder contains following template files:

	deployment.yaml: This file is used as a basic manifest for creating a Kubernetes deployment. For the H2 node, this file creates H2 pod.

	pvc.yaml: This yaml is used to create persistent volumes claim for the H2 deployment. This file creates h2-pvc for, the volume claim for H2.

	service.yaml: This template is used as a basic manifest for creating a service endpoint for our deployment. This service.yaml creates H2 service endpoint.

values.yaml

	This file contains the default configuration values for the chart.

idman

About

This chart deploys the Idman component of Corda CENM. The folder contents are below:

Folder Structure

├── idman
│ ├── Chart.yaml
│ ├── files
│ │ ├── idman.conf
│ │ └── run.sh
│ ├── templates
│ │ ├── configmap.yaml
│ │ ├── deployment.yaml
│ │ ├── _helpers.tpl
│ │ ├── pvc.yaml
│ │ └── service.yaml
│ └── values.yaml

Charts description

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

files

	This folder contains the configuration files needed for idman.

	idman.conf: The main configuration file for idman.

	run.sh: The executable file to run the idman service in the kubernetes pod.

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Idman implementation. This folder contains following template files:

	configmap.yaml: This creates a configmap of all the files from the files folder above.

	deployment.yaml: This creates the main Kubernetes deployment. It contains one init-container init-certificates to download the keys/certs from Vault, and two main containers: idman and logs.

	_helpers.tpl: This is a helper file to add any custom labels.

	pvc.yaml: This creates the PVCs used by idman: one for logs and one for the file H2 database.

	service.yaml: This creates the idman service endpoint with Ambassador proxy configurations.

values.yaml

	This file contains the default values for the chart.

nmap

About

This chart deploys the NetworkMap component of Corda CENM. The folder contents are below:

Folder Structure

├── nmap
│ ├── Chart.yaml
│ ├── files
│ │ ├── nmap.conf
│ │ ├── run.sh
│ │ └── set-network-parameters.sh
│ ├── templates
│ │ ├── configmap.yaml
│ │ ├── deployment.yaml
│ │ ├── _helpers.tpl
│ │ ├── pvc.yaml
│ │ └── service.yaml
│ └── values.yaml

Charts description

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

files

	This folder contains the configuration files needed for nmap.

	nmap.conf: The main configuration file for nmap.

	run.sh: The executable file to run the nmap service in the kubernetes pod.

	set-network-parameters.sh: This executable file which creates the initial network-parameters.

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for NetworkMap implementation. This folder contains following template files:

	configmap.yaml: This creates a configmap of all the files from the files folder above.

	deployment.yaml: This creates the main Kubernetes deployment. It contains a init-container init-certificates to download the keys/certs from Vault, a setnparam container to set the network-parameters, and two main containers: main and logs.

	_helpers.tpl: This is a helper file to add any custom labels.

	pvc.yaml: This creates the PVCs used by nmap: one for logs and one for the file H2 database.

	service.yaml: This creates the nmap service endpoint with Ambassador proxy configurations.

values.yaml

	This file contains the default values for the chart.

node

About

This chart deploys the Node component of Corda Enterprise. The folder contents are below:

Folder Structure

├── node
│ ├── Chart.yaml
│ ├── files
│ │ ├── node.conf
│ │ └── run.sh
│ ├── templates
│ │ ├── configmap.yaml
│ │ ├── deployment.yaml
│ │ ├── _helpers.tpl
│ │ ├── pvc.yaml
│ │ └── service.yaml
│ └── values.yaml

Charts description

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

files

	This folder contains the configuration files needed for Corda node.

	node.conf: The main configuration file for node.

	run.sh: The executable file to run the node service in the kubernetes pod.

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Corda Node implementation. This folder contains following template files:

	configmap.yaml: This creates a configmap of all the files from the files folder above.

	deployment.yaml: This creates the main Kubernetes deployment. It contains three init-containers: init-check-registration to check if node-initial-registration was completed, init-certificates to download the keys/certs from Vault, and a db-healthcheck container to check if the database service is reachable, and two main containers: node and logs.

	_helpers.tpl: This is a helper file to add any custom labels.

	pvc.yaml: This creates the PVC used by the node.

	service.yaml: This creates the node service endpoint with Ambassador proxy configurations.

values.yaml

	This file contains the default values for the chart.

node-initial-registration

About

This chart deploys the Node-Registration job for Corda Enterprise. The folder contents are below:

Folder Structure

├── node-initial-registration
│ ├── Chart.yaml
│ ├── files
│ │ ├── node.conf
│ │ └── node-initial-registration.sh
│ ├── templates
│ │ ├── configmap.yaml
│ │ ├── _helpers.tpl
│ │ └── job.yaml
│ └── values.yaml

Charts description

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

files

	This folder contains the configuration files needed for Corda node.

	node.conf: The main configuration file for node.

	node-initial-registration.sh: The executable file to run the node initial-registration.

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for registration job. This folder contains following template files:

	configmap.yaml: This creates a configmap of all the files from the files folder above.

	_helpers.tpl: This is a helper file to add any custom labels.

	job.yaml: This creates the main Kubernetes job. It contains two init-containers: init-certificates to download the keys/certs from Vault, and a db-healthcheck container to check if the database service is reachable, and two main containers: registration for the actual registration and store-certs to upload the certificates to Vault.

values.yaml

	This file contains the default values for the chart.

notary

About

This chart deploys the Notary component of Corda Enterprise. The folder contents are below:

Folder Structure

├── notary
│ ├── Chart.yaml
│ ├── files
│ │ ├── notary.conf
│ │ └── run.sh
│ ├── templates
│ │ ├── configmap.yaml
│ │ ├── deployment.yaml
│ │ ├── _helpers.tpl
│ │ ├── pvc.yaml
│ │ └── service.yaml
│ └── values.yaml

Charts description

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

files

	This folder contains the configuration files needed for Corda Notary.

	notary.conf: The main configuration file for notary.

	run.sh: The executable file to run the notary service in the kubernetes pod.

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Corda Notary implementation. This folder contains following template files:

	configmap.yaml: This creates a configmap of all the files from the files folder above.

	deployment.yaml: This creates the main Kubernetes deployment. It contains three init-containers: init-check-registration to check if notary-initial-registration was completed, init-certificates to download the keys/certs from Vault, and a db-healthcheck container to check if the database service is reachable, and two main containers: notary and logs.

	_helpers.tpl: This is a helper file to add any custom labels.

	pvc.yaml: This creates the PVC used by the notary.

	service.yaml: This creates the notary service endpoint with Ambassador proxy configurations.

values.yaml

	This file contains the default values for the chart.

notary-initial-registration

About

This chart deploys the Notary-Registration job for Corda Enterprise. The folder contents are below:

Folder Structure

├── notary-initial-registration
│ ├── Chart.yaml
│ ├── files
│ │ ├── create-network-parameters-file.sh
│ │ ├── notary.conf
│ │ └── notary-initial-registration.sh
│ ├── templates
│ │ ├── configmap.yaml
│ │ ├── _helpers.tpl
│ │ └── job.yaml
│ └── values.yaml

Charts description

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

files

	This folder contains the configuration files needed for Corda Notary.

	create-network-parameters-file.sh: Creates the network parameters file.

	notary.conf: The main configuration file for notary.

	notary-initial-registration.sh: The executable file to run the notary initial-registration.

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Notary registration job. This folder contains following template files:

	configmap.yaml: This creates a configmap of all the files from the files folder above.

	_helpers.tpl: This is a helper file to add any custom labels.

	job.yaml: This creates the main Kubernetes job. It contains two init-containers: init-certificates to download the keys/certs from Vault, and a db-healthcheck container to check if the database service is reachable, and two main containers: registration for the actual registration and store-certs to upload the certificates to Vault.

values.yaml

	This file contains the default values for the chart.

signer

About

This chart deploys the Signer component of Corda CENM. The folder contents are below:

Folder Structure

└── signer
 ├── Chart.yaml
 ├── files
 │ └── signer.conf
 ├── README.md
 ├── templates
 │ ├── configmap.yaml
 │ ├── deployment.yaml
 │ ├── _helpers.tpl
 │ └── service.yaml
 └── values.yaml

Charts description

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

files

	This folder contains the configuration files needed for signer.

	signer.conf: The main configuration file for signer.

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Signer implementation. This folder contains following template files:

	configmap.yaml: This creates a configmap of all the files from the files folder above.

	deployment.yaml: This creates the main Kubernetes deployment. It contains two init-containers: init-check-certificates to check if the signer certificates are saved on Vault and init-certificates to download the keys/certs from Vault, and two main containers: signer and logs.

	_helpers.tpl: This is a helper file to add any custom labels.

	service.yaml: This creates the signer service endpoint.

values.yaml

	This file contains the default values for the chart.

zone

About

This chart deploys the Zone service of Corda CENM. The folder contents are below:

Folder Structure

└── zone
 ├── Chart.yaml
 ├── files
 │ └── run.sh
 ├── README.md
 ├── templates
 │ ├── configmap.yaml
 │ ├── deployment.yaml
 │ ├── _helpers.tpl
 │ ├── pvc.yaml
 │ └── service.yaml
 └── values.yaml

Charts description

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

files

	This folder contains the configuration files needed for zone service.

	run.sh: The main configuration file for zone service.

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Zone implementation. This folder contains following template files:

	configmap.yaml: This creates a configmap of all the files from the files folder above.

	deployment.yaml: This creates the main Kubernetes deployment. It contains init-certificates to download the keys/certs from Vault, and one main containers: main to start the zone service.

	_helpers.tpl: This is a helper file to add any custom labels.

	pvc.yaml: This creates the PVC used by the zone.

	service.yaml: This creates the zone service endpoint.

values.yaml

	This file contains the default values for the chart.

 Hyperledger Fabric Charts

Hyperledger Fabric Charts

The structure below represents the Chart structure for Hyperledger fabric components in Hyperledger Bevel implementation.

/hyperledger-fabric
|-- charts
| |-- ca
| |-- catools
| |-- create_channel
| |-- fabric_cli
| |-- install_chaincode
| |-- instantiate_chaincode
| |-- join_channel
| |-- orderernode
| |-- peernode
| |-- upgrade_chaincode
| |-- verify_chaincode
| |-- zkkafka

Pre-requisites

helm to be installed and configured on the cluster.

CA (certification authority)

About

This folder consists CA helm charts which are used by the ansible playbooks for the deployment of the CA component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/ca
|-- templates
| |-- _helpers.tpl
| |-- volumes.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for CA implementation.

	This folder contains following template files for CA implementation

	_helpers.tpl

This file doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to put template helpers that we can re-use throughout the chart.
That file is the default location for template partials, as we have defined a template to encapsulate a Kubernetes block of labels for CA.

	deployment.yaml

This file is used as a basic manifest for creating a Kubernetes deployment. For the CA node, this file creates a CA deployment. The file defines where CA container is defined with fabric image and CA client and CA server onfiguration details and
the init container basically configures the vault with various vault parameters. Certificates and CA server database are defined on the volume mount paths.

	service.yaml

This template is used as a basic manifest for creating a service endpoint for our deployment.
This service.yaml creates CA service endpoint. The file basically specifies service type and kind of service ports for the CA client and CA server.

	volume.yaml

This yaml is used to create persistent volumes claim for the CA deployment. A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
PersistentVolumes provide a way for users to ‘claim’ durable storage without having the information details of the particular cloud environment.
This file creates CA pvc for, the volume claim for CA.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name etc.

values.yaml

	This file contains the default configuration values for the chart.

CA tools

About

This folder consists CA tools helm charts which are used by the ansible playbooks for the deployment of the CA tools component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/catools
|-- templates
| |-- volumes.yaml
| |-- deployment.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for CA tools implementation.

	This folder contains following template files for CA tools implementation

	deployment.yaml

This file is used as a basic manifest for creating a Kubernetes deployment for CA tools. The file basically describes the container and volume specifications of the CA tools

	volume.yaml

This yaml is used to create persistent volumes claim for the Orderer deployment. A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
PersistentVolumes provide a way for users to ‘claim’ durable storage without having the information details of the particular cloud environment.
This file creates two persistentVolumeClaims, one for CA tools pvc and the other to store crypto config in the ca-tools-crypto-pvc persistent volume.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name etc.

values.yaml

	This file contains the default configuration values for the chart.

Create channel

About

This folder consists of create_channel helm charts which are used by the ansible playbooks for the deployment of the create_channel component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/create_channel
|-- templates
| |--_helpers.tpl
| |-- create_channel.yaml
| |-- configmap.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Peer implementation.

	This folder contains following template files for peer implementation

	_helpers.tpl

This file doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to put template helpers that we can re-use throughout the chart.
That file is the default location for template partials, as we have defined a template to encapsulate a Kubernetes block of labels for channels.

	configmap.yaml

The configmap.yaml file through template engine generate configmaps. In Kubernetes, a ConfigMap is a container for storing configuration data. Things like pods can access the data in a ConfigMap.
The configmap.yaml file creates two configmaps namely genesis-block-peer and peer-config.
For Create_channel component, it creates two configmaps, one for the channel creation having various data fields such as channel, peer and orderer details, and another for the generation of channel artifacts containing the channel transaction (channeltx) block and other labels.

	create_channel.yaml

This file creates channel creation job where in the createchannel container the create channel peer commands are fired based on checking the results obtained from fetching channeltx block to see if channel has already been created or not.
Additionally, the commands are fired based on the tls status whether it is enabled or not. The init container is used to setup vault configurations, and certificates are obtained from the volume mount paths.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name etc.

values.yaml

	This file contains the default configuration values for the chart.

Install Chaincode

About

This folder consists of install_chaincode helm charts which are used by the ansible playbooks for the deployment of the install_chaincode component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/install_chaincode
|-- templates
| |--_helpers.tpl
| |-- install_chaincode.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for install_chaincode implementation.

	This folder contains following template files for install_chaincode implementation

	_helpers.tpl

This fie doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to put template helpers that we can re-use throughout the chart.
This file is the default location for template partials, as we have defined a template to encapsulate a Kubernetes block of labels for install_chaincodes.

	install_chaincode.yaml

This yaml file basically creates a job for the installation of chaincode. We define containers where fabrictools image is pulled and chaincode install peer commands are fired.
Moreover, the chart provides the environment requirements such as docker endpoint, peer and orderer related information, volume mounts, etc for the chaincode to be installed.
The init container basically configures the vault with various vault parameters.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

Instantiate Chaincode

About

This folder consists instantiate_chaincode helm charts, which are used by the ansible playbooks for the deployment of the instantiate_chaincode component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/instantiate_chaincode
|-- templates
| |--_helpers.tpl
| |-- instantiate_chaincode.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for instantiate_chaincode implementation.

	This folder contains following template files for instantiate_chaincode implementation

	_helpers.tpl

This file doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to put template helpers that we can re-use throughout the chart.
This file is the default location for template partials, as we have defined a template to encapsulate a Kubernetes block of labels for instantiate_chaincodes.

	instantiate_chaincode.yaml

This yaml file basically creates a job for the instantiation of chaincode. We define containers where fabrictools image is pulled and based on the endorsement policies set, chaincode instantiate peer commands are fired.
Moreover, the chart provides the environment requirements such as docker endpoint, peer and orderer related information, volume mounts, etc for the chaincode to be instantiated.
The init container basically configures the vault with various vault parameter.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

Join channel

About

This folder consists join_channel helm charts which are used by the ansible playbooks for the deployment of the join_channel component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/join_channel
|-- templates
| |--_helpers.tpl
| |-- join_channel.yaml
| |-- configmap.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which, when combined with values, will generate valid Kubernetes manifest files for Peer implementation.

	This folder contains following template files for peer implementation

	_helpers.tpl

This file doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to put template helpers that we can re-use throughout the chart.
That file is the default location for template partials, as we have defined a template to encapsulate a Kubernetes block of labels for peers.

	configmap.yaml

The configmap.yaml file through template engine generate configmaps. In Kubernetes, a ConfigMap is a container for storing configuration data. Things like pods, can access the data in a ConfigMap.
The configmap.yaml file creates two configmaps namely genesis-block-peer and peer-config.
For join_channel component, it creates two configmaps, one for the channel creation having various data fields such as channel, peer and orderer details, and another for the generation of channel artifacts containing the channel transaction (channeltx) block and other labels.

	join_channel.yaml

This file creates channel join job where in the joinchannel container the commands are fired based on the tls status whether it is enabled or not wherein first the channel config is fetched and then the peers join the created channel.
The init container is used to setup vault configurations. And certificates are obatined from the volume mount paths.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

Orderer Chart

About

This folder consists Orderer helm charts which are used by the ansible playbooks for the deployment of the Orderer component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/Orderernode
|-- templates
| |--_helpers.tpl
| |-- volumes.yaml
| |-- deployment.yaml
| |-- service.yaml
| |-- configmap.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values ,will generate valid Kubernetes manifest files for Orderer implementation.

	This folder contains following template files for Orderer implementation

	_helpers.tpl

This fie doesnt output a Kubernetes manifest file as it begins with underscore (_) .And its a place to put template helpers that we can re-use throughout the chart.
That file is the default location for template partials ,as we have defined a template to encapsulate a Kubernetes block of labels for Orderers.

	configmap.yaml

The configmap.yaml file through template engine generate configmaps.In Kubernetes, a ConfigMap is a container for storing configuration data.Things like pods, can access the data in a ConfigMap.
The configmap.yaml file creates two configmaps namely genesis-block-orderer and orderer-config.

	deployment.yaml

This file is used as a basic manifest for creating a Kubernetes deployment.For the Orderer node, this file creates orderer deployment.

	service.yaml

This template is used as a basic manifest for creating a service endpoint for our deployment.This service.yaml creates orderer service endpoint

	volume.yaml

This yaml is used to create persistent volumes claim for the Orderer deployment.A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
PersistentVolumes provide a way for users to ‘claim’ durable storage without having the information details of the particular cloud environment.
This file creates orderer-pvc for , the volume claim for Orderer.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

Peer Chart

About

This folder consists Peer helm charts which are used by the ansible playbooks for the deployment of the Peer component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/peernode
|-- templates
| |--_helpers.tpl
| |-- volumes.yaml
| |-- deployment.yaml
| |-- service.yaml
| |-- configmap.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for Peer implementation.

	This folder contains following template files for peer implementation

	_helpers.tpl

This file doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to put template helpers that we can re-use throughout the chart.
That file is the default location for template partials, as we have defined a template to encapsulate a Kubernetes block of labels for peers.

	configmap.yaml

The configmap.yaml file through template engine generate configmaps. In Kubernetes, a ConfigMap is a container for storing configuration data. Things like pods can access the data in a ConfigMap.
The configmap.yaml file creates two configmaps namely genesis-block-peer and peer-config.

	service.yaml

This template is used as a basic manifest for creating a service endpoint for our deployment. This service.yaml creates peer service endpoint.

	volume.yaml

This yaml is used to create persistent volumes claim for the peer deployment. A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
PersistentVolumes provide a way for users to ‘claim’ durable storage without having the information details of the particular cloud environment.
This file creates peer-pvc for the volume claim for peer.

	deployment.yaml

This file is used as a basic manifest for creating a Kubernetes deployment. For the peer node, this file creates three deployments namely ca, ca-tools and peer.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

Upgrade Chaincode

About

This folder consists of upgrade_chaincode helm charts, which are used by the ansible playbooks for the deployment of the upgrade_chaincode component. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/upgrade_chaincode
|-- templates
| |--_helpers.tpl
| |-- upgrade_chaincode.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for upgrade_chaincode implementation.

	This folder contains following template files for upgrade_chaincode implementation

	_helpers.tpl

This file doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to put template helpers that we can re-use throughout the chart.
This file is the default location for template partials, as we have defined a template to encapsulate a Kubernetes block of labels for upgrade_chaincodes.

	upgrade_chaincode.yaml

This yaml file basically creates a job for the upgradation of chaincode. We define containers where fabrictools image is pulled and based on the endorsement policies set, chaincode upgrade peer commands are fired.
Moreover, the chart provides the environment requirements such as docker endpoint, peer and orderer related information, volume mounts, channel information, etc, for the chaincode to be upgraded.
The init container basically configures the vault with various vault parameter.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion ,name etc.

values.yaml

	This file contains the default configuration values for the chart.

zkkafka

About

This folder consists zkkafka helm charts which are used by the ansible playbooks for the deployment of the zkkafka component. The folder contains a templates folder,a chart file and a value file.

Folder Structure

/zkkafka
|-- templates
| |--_helpers.tpl
| |-- volumes.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for zkkafka implementation.

	This folder contains following template files for zkkafka implementation

	_helpers.tpl

This file doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to put template helpers that we can re-use throughout the chart.
That file is the default location for template partials, as we have defined a template to encapsulate a Kubernetes block of labels for zkkafkas.

	deployment.yaml

This file is used as a basic manifest for creating a Kubernetes deployment.For the zkkafka node, this file creates zkkafka deployment.

	service.yaml

This template is used as a basic manifest for creating a service endpoint for our deployment. This service.yaml creates zkkafka service endpoint

	volume.yaml

This yaml is used to create persistent volumes claim for the zkkafka deployment. A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
PersistentVolumes provide a way for users to ‘claim’ durable storage without having the information details of the particular cloud environment.
This file creates zkkafka pvc for the volume claim for zkkafka.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

 Indy Charts

Indy Charts

The structure below represents the Chart structure for Hyperledger Indy components in Hyperledger Bevel implementation.

/hyperledger-indy
|-- charts
| |-- indy-auth-job
| |-- indy-cli
| |-- indy-domain-genesis
| |-- indy-key-mgmt
| |-- indy-ledger-txn
| |-- indy-node
| |-- indy-pool-genesis

Pre-requisites

helm to be installed and configured on the cluster.

Indy-Auth-Job

About

This chart is using admin auth to generate auth. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/indy-auth-job
|-- templates
| |-- job.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which when combined with values, will generate valid Kubernetes manifest files for auth job implementation.

	This folder contains following template files for auth job implementation

	Job.yaml

This job uses admin auth to generate auth read only methods, policies and roles for stewards, so they have the right they need to work.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

Indy-Domain-Genesis

About

This folder consists of domain genesis helm chart which is used to generate the domain genesis for indy network.

Folder Structure

/indy-domain-genesis
|-- templates
| |-- configmap.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This chart is used to generate the domain genesis.

	configmap.yaml

The ConfigMap API resource provides mechanisms to inject containers with configuration data while keeping containers agnostic of Kubernetes. Here it is used to store Domain Genesis Data.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

Indy Key Management

About

This folder consists indy-key-management helm charts which are used by the ansible playbooks for the generation of indy crypto material. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/indy-key-management
|-- templates
| |-- job.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which, when combined with values, will generate crypto material for Indy.

	This folder contains following template files for peer implementation

	job.yaml

This job is used to generate crypto and save into vault.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

Indy Ledger Txn

About

This folder contains helm chart which is used to run Indy Ledger Transaction Script.

Folder Structure

/indy-ledger-txn
|-- templates
| |-- job.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which, when combined with values, will generate valid Kubernetes manifest files for ledger NYM transaction implementation.

	This folder contains following template files for indy-ledger NYM Transaction implementation

	job.yaml

This Job is used to generate a NYM transaction between an admin identity and an endorser identity.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

Indy Node

About

This folder consists of indy-node helm charts, which are used by the ansible playbooks for the deployment of the indy nodes. The folder contains a templates folder, a chart file and a value file.

Folder Structure

/indy-node
|-- templates
| |-- configmap.yaml
| |-- service.yaml
| |-- statesfulset.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which, when combined with values, will generate Indy nodes.

	This folder contains following template files for instantiate_chaincode implementation

	configmap.yaml

The configmap.yaml file through template engine generate configmaps. In Kubernetes, a ConfigMap is a container for storing configuration data. Things like pods can access the data in a ConfigMap. This file is used to inject Kubernetes container with indy config data.

	service.yaml

This creates a service for indy node and indy node client. A service in Kubernetes is a grouping of pods that are running on the cluster

	statesfulset.yaml

Statefulsets is used for Stateful applications, each repliCA of the pod will have its own state, and will be using its own Volume.
This statefulset is used to create indy nodes.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

Indy Pool Genesis

About

This folder consists of pool genesis helm chart which is used to generate the pool genesis for indy network.

Folder Structure

/indy-pool-genesis
|-- templates
| |-- configmap.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This chart is used to generate the initial pool genesis which is used to connect to indy network.

	configmap.yaml

The ConfigMap API resource provides mechanisms to inject containers with configuration data while keeping containers agnostic of Kubernetes. Here it is used to store Pool Genesis Data.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

 Quorum Charts

Quorum Charts

The structure below represents the Chart structure for Quorum components in Hyperledger Bevel implementation.

/quorum
|-- charts
| |-- node_constellation
| |-- node_tessera

Pre-requisites

helm to be installed and configured on the cluster.

node_constellation

About

This chart is used to deploy Quorum nodes with constellation transaction manager.

Folder Structure

/node_constellation
|-- templates
| |-- _helpers.tpl
| |-- configmap.yaml
| |-- ingress.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which, when combined with values, will generate valid Kubernetes manifest files for auth job implementation.

	This folder contains following template files for node_constellation implementation

	_helpers.tpl

This file doesn’t output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to put template helpers that we can re-use throughout the chart.
That file is the default location for template partials, as we have defined a template to encapsulate a Kubernetes block of labels for node_constellation.

	deployment.yaml

This file is used as a basic manifest for creating a Kubernetes deployment. For the node_constellation, this file creates a constellation node deployment deployment. The file defines 3 containers, init container which gets all the secrets from the vault, constellation node container and a quorum container.

	service.yaml

This template is used as a basic manifest for creating a service endpoint for our deployment. The file basically specifies service type and kind of service ports for the constellation node.

	configmap.yaml

The ConfigMap API resource provides mechanisms to inject containers with configuration data while keeping containers agnostic of Kubernetes. Here it is used to store Genesis Data.

	ingress.yaml

Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the cluster. Traffic routing is controlled by rules defined on the Ingress resource.
This file containes those resources.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

node_tessera

About

This chart is used to deploy Quorum nodes with tessera transaction manager.

Folder Structure

/node_constellation
|-- templates
| |-- _helpers.tpl
| |-- configmap.yaml
| |-- ingress.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which, when combined with values, will generate valid Kubernetes manifest files for tessera implementation.

	This folder contains following template files for node_constellation implementation

	_helpers.tpl

This file doesnt output a Kubernetes manifest file as it begins with underscore (_). And it’s a place to put template helpers that we can re-use throughout the chart.
That file is the default location for template partials, as we have defined a template to encapsulate a Kubernetes block of labels for node_constellation.

	deployment.yaml

This file is used as a basic manifest for creating a Kubernetes deployment. For the node_constellation, this file creates a constellation node deployment deployment.The file defines 4 containers, init container which gets all the secrets from the vault, mysql-init caontainer, mysql-db and a quorum container.

	service.yaml

This template is used as a basic manifest for creating a service endpoint for our deployment. The file basically specifies service type and kind of service ports for the tessera node.

	configmap.yaml

The ConfigMap API resource provides mechanisms to inject containers with configuration data while keeping containers agnostic of Kubernetes. Here it is used to store tessera config data.

	ingress.yaml

Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the cluster. Traffic routing is controlled by rules defined on the Ingress resource.
This file contains those resources.

Chart.yaml

	This file contains the information about the chart such as apiversion, appversion, name, etc.

values.yaml

	This file contains the default configuration values for the chart.

 Hyperledger Besu Charts

Hyperledger Besu Charts

The structure below represents the Chart structure for Hyperledger Besu components in Hyperledger Bevel implementation.

|hyperledger-besu
|-- charts
| |-- node_orion

Pre-requisites

helm to be installed and configured on the cluster.

node_orion (besu node chart with orion transaction manager)

About

This folder consists of Hyperledger-Besu node charts which is used by the ansible playbook for the deployment of the node. This folder contains a template folder, a chart file and a value file.

Folder Structure

|node_orion
|-- templates
| |-- _helpers.tpl
| |-- configmap.yaml
| |-- deployment.yaml
| |-- service.yaml
|-- Chart.yaml
|-- values.yaml

Charts description

templates

	This folder contains template structures which, when combined with values, will generate valid Kuberetenes manifest files for Hyperledger-Besu node implementation.

	This folder contains following template files for node implementation

	_helpers.tpl

This file doesn’t output a Kubernets manifest file as it begins with underscore (_). And it’s a place to put template helpers that we can re-use throughout the chart.
That file is the default location for template partials, as we have defined a template to encapsulate a Kubernetes block label for node.

	configmap.yaml

The configmap contains the genesis file data encoded in base64 format.

	deployment.yaml

This file is used as a basic manifest for creating a Kubernetes deployment. For the node, this file creates a deployment. The file defines where containers are defined and the respective Hyperledger-Besu images. It also contain the initial containers where the crypto material is fetched from the vault.

	service.yaml

This template is used as a basic manifest for creating service endpoints for our deployment.
This service.yaml creates endpoints for the besu node.

 Jenkins Pipeline

Jenkins Pipeline

Jenkins is a self-contained, open source automation server which can be used to automate all sorts of tasks related to building, testing, and delivering or deploying software.

Jenkins in Hyperledger Bevel

In Hyperledger Bevel, although Jenkins is not mandatory, we have a single Jenkinsfile [https://github.com/hyperledger/bevel/blob/main/automation/Jenkinsfile] as a sample to help you setup CI/CD Pipelines.

Pre-requisites

	Setup Jenkins with slave configurations. Declare a slave-config called ansible with the Docker Image ghcr.io/hyperledger/bevel-build:jenkins [https://github.com/hyperledger/bevel/pkgs/container/bevel-baf-build/tags].

	A EKS Cluster (Managed on AWS) and its kubeconfig file available and accessible from the Jenkins server.

	AWS user jenkins with CLI credentials with access to above EKS Cluster.

	A Hashicorp Vault installation which is accessible from the Jenkins server.

	A Git repo which will be added as multi-branch pipeline on Jenkins (this is a fork of this repo).

	A separate bevel-configuration git repo where the templated network.yaml for different platforms are stored. Details of this repo needs to be updated in pipeline Stage Create Configuration File.

Branch Configuration

The Jenkinsfile is designed to ignore develop and main branches by default. So, create platform specific branches in your forked repo.

	corda for Opensource Corda

	corda-ent for Enterprise Corda

	fabric for Hyperledger Fabric

	besu for Hyperledger Besu

	indy for Hyperledger Indy

	quorum for Quorum

Your bevel-configuration repo should have the corresponding folders and files as demanded/configured in Stage Create Configuration File.

Jenkins Secrets

Following secrets must be stored in Jenkins which is configured in the environment section. This can be renamed/updated in the Jenkinsfile according to your needs.

	sownak-innersource: is the Git Token and password to access the Git repos.

	aws_demo_kubeconfig: is the Kubeconfig file for AWS EKS cluster.

	jenkins_gitops_key: is the Gitops private key which has Read-Write access to the Git repos.

	nexus_user: is the Service User and Password for access to Nexus for Cordapps (only used in Corda).

	aws_demo_vault_key: is the private key to enable ssh access to Hashicorp Vault Server.

	aws_demo_vault_token: is the Root Token for Hashicorp Vault.

	gmaps_key: is the Google Maps API key for frontend (only used when deploying Supplychain application).

	aws_jenkins: is the AWS credentials for jenkins user on AWS IAM.

Environment Changes

Following environment variables need to be updated in Jenkinsfile for your own environment

	VAULT_SERVER=[vault server ip address or domain name reachable from this server]

	VAULT_PORT=[vault server port]

	VAULT_BASTION=[vault bastion server address]

	VAULT_PRIVATE_IP=[vault server private ip address]

Parameters

These can be changed when running manually, the automated Jenkins pipeline always use the default option):

	FORCE_ACTION (default: no) To force rebuild [ci skip] commits in case of previous failure.

	RESET_ACTION (default: yes) To have the option to NOT reset the network when running the pipeline.

	APIONLY_ACTION (default: no) To run only API test on existing live network in case of previous failure.

	FABRIC_VERSION (default: 1_4_4) To select the Fabric version.

	FABRIC_CONSENSUS (default: raft) To select the Fabric consensus.

	CORDA_VERSION (default: 4_4) To select the Corda Opensource version.

	QUORUM_VERSION (default: 2_5_0) To select the Quorum version (only 2_5_0 is supported for now)

	QUORUM_CONSENSUS (default: ibft) To change the Quorum consensus.

	QUORUM_TM (default: tessera) To change the Quorum Transaction manager.

	INDY_VERSION (default: 1_11_0) To change the Indy version.

	Default Corda Enterprise version is 4_4. This is hardcoded in the jenkinsfile.

	Default Besu settings are: Version 1_4_4, Consensus IBFT, Transaction Manager Orion.

Setup on Jenkins

Configure Multi-branch pipeline with the forked repo as the source. In case you create the branches later, scan the pipeline to get new branches on Jenkins.

Jenkins Stages

	Checkout SCM: Manually checkout the branch and check for [ci skip] commits as they are skipped.

	Prepare build environment: Creates the build directory and sets up the necessary files for build like gitops.pem, vault.pem, kubeconfig, test jsons. Also creates the ssh-tunnel connection to Hashicorp Vault server.

	<branch>-settings: Set env variables CONSENSUS, VERSION and TM based on the branch i.e. based on the DLT platform.

	Create Configuration File: Downloads the config file (main network.yaml, addorg.yaml and application.yaml) depending on the BRANCH_NAME, CONSENSUS, VERSION and TM from bevel-configuration and adds the secret parameters.

	Reset existing network: Resets the network based on application.yaml as that should contain all the orgs.

	Deploy network: Deploys the network based on main network.yaml.

	Add a new node: Adds a new organization to the above network. This is not enabled for Indy currently.

	Deploy Supplychain-App: Deploys the supplychain app. Not enabled for Indy. Corda Enterprise and Besu are in the future roadmap.

	Deploy Identity-App: Deploys the Identity app. Only for Indy.

	Run SupplyChain API tests: Runs Supplychain API test using newman. This step has a try-catch so that the whole pipeline does not fail if only API tests fail. Re-run the tests manually if only API tests fail. Not enabled for Indy. Corda Enterprise and Besu are in the future roadmap.

	Run Identity API tests: Runs Identity API test using newman. This step has a try-catch so that the whole pipeline does not fail if only API tests fail. Re-run the tests manually if only API tests fail. Only for Indy.

	Manual Approval for resetting the deployment: Waits for 20 minutes before resetting the network. If you want to keep the network for demo, Abort at this stage.

	Reset network again: Resets the network after the 20 minutes is over or you chose to reset. Keeps the network running if the previous step was aborted.

 Sample Usage

Sample Usage

This section shows the sample applications that are provisioned by Hyperledger Bevel. If you haven’t already, follow the Getting Started to setup the network for your desired DLT/Blockchain platform. We have provided sample applications to be deployed using Hyperledger Bevel.

	Supplychain

	Indy RefApp

 Supplychain

Supplychain

One of the two reference applications for Bevel, is the Supplychain usecase. On this page, we will describe the usecase and its models, as well as pre-requisites to set it up yourself.

Use case description

The Supplychain reference application is an example of a common usecase for a blockchain; the supplychain. The application defines a consortium of multiple organizations. The application allows nodes to track products or goods along their chain of custody. It provides the members of the consortium all the relevant data to their product.

The application has been implemented for Hyperledger Fabric, Quorum and R3 Corda, with support for Hyperledger Besu coming soon. The platforms will slightly differ in behavior, but follow the same principles.

In the context of the supplychain, there are two types of items that can be tracked, products and containers. Below you will find a definition of the item and its properties:

Product

	Field
	Description

	trackingID
	A predefined unique UUID

	type
	The type for the object, in this case product

	productName
	The name of the product

	health*
	Data from IOT sensors regarding condition of the item

	location
	The current location of the product, included in any requests sent to the blockchain

	sold
	Boolean value that tracks if the product has been sold, false by default

	recalled
	Boolean value that tracks if the product has been recalled, false by default

	containerID
	The ID of the container which a product can be packaged in. If there is a container, additional info is read from the ContainerState (described below)

 Indy RefApp

Indy RefApp

Use case description

Welcome to the Indy Ref App which allows nodes to implement the concept of digital identities using blockchain.
There are 3 components

	Alice: Alice is the end user and a student.

	Faber: Faber is the university.

	Indy Webserver

In this usecase, Alice obtains a Credential from Faber College regarding the transcript. A connection is build between Faber College and Alice (onboarding process).Faber College creates and sends a Credential Offer to Alice. Alice creates a Credential Request and sends it to Faber College.Faber College creates the Credential for Alice.
Alice now receives the Credential and stores it in her wallet.

Pre-requisites

A network with 2 organizations:

	Authority

	1 Trustee

	University

	4 Steward nodes

	1 Endorser
A Docker repository

Find more at Indy-Ref-App [https://github.com/hyperledger/bevel/tree/main/examples/identity-app]

 Bevel current roadmap

Bevel current roadmap

 gantt
 title Bevel current roadmap
 dateFormat YY-MM-DD
 section Platform
 Platforms and components upgrade : active, 22-01-03, 180d
 Fabric OFE*: active, 22-01-03, 90d
 Ansible Decoupling: active, 22-01-03, 60d
 section Application
 Besu Ref App: active, 22-02-14, 120d
 section CI/CD
 Moving to ghcr.io: active, 22-01-03, 60d

OFE* : Operational feature enhancement

Legend of annotations:

	Mark

	Description

	[image: pin]

	work to do

	[image: tick]

	work completed

	[image: run]

	on-going work

	[image: muscle]

	stretch goal

	[image: hand]

	on hold

General

	
	[image: run] Improve the existing readthedocs documentations

	
	[image: run] Update guide for deployment on Local k8s

	
	[image: run] Platforms and components upgrade:

	
	[image: run] Flux version 2 upgrade

	[image: pin] Test and update platforms code to run on EKS v1.21

	[image: pin] Setup AWS cloudwatch exporter

	[image: pin] Grafana and Promethus integration

	[image: pin] Improve logging/error messaging in playbooks

Platforms

	[image: run] Reduce/decouple ansible dependecy in DLT platforms automation

	
	[image: run] Corda Enterprise operational feature enhancements

	
	[image: pin] HA Notary options

	[image: pin] Enable PostGreSQL support for Corda Enterprise

	[image: pin] Removal of node

	
	[image: run] HL Fabric operational feature enhancements

	
	[image: run] Feature for user identities

	[image: run] External chaincode for Fabric 2.2.x

	[image: pin] CI/CD piplelines for chaincode deployment

	
	[image: run] HL Besu operational feature enhancements

	
	[image: run] Implement private transactions

	[image: hand] Enable bootnodes

	
	[image: run] Quorum operational feature enhancements

	
	[image: run] Vault secret engine integration with tessera

	[image: run] Implement private transactions

	
	[image: run] HL Indy operational feature enhancements

	
	[image: hand] Removal of organizations from a running Indy Network

Application

	[image: run] Hyperledger Besu reference application

Histroic DLT/Blockchain support releases

This section has been moved to the Compability Matrix

 Compability Matrix

Compability Matrix

Bevel current tools/platforms support version and historic details

Colour Legends

[image: _images/legends.png]

Compatibility Table

[image: _images/compatibility_matrix.png]

 Architecture Reference

Architecture Reference

[image: Figure: Hyperledger Bevel Physical Architecture]

Figure: Hyperledger Bevel Physical Architecture

Security Services

These are the services to enable the security of cryptographic keys, users, nodes and transactions along with the infrastructure supporting those services.

Policy Management

Policy management is the process of creating, communicating, and maintaining policies and procedures within an organization. Policy Management is a key feature used in development as well as operational phase of any product as it dictates who has what control in the dev/test/prod environment(s).

In Hyperledger Bevel, Policy Management is provided by the Git repository. Bevel uses GitOps for deployment and operations, hence all policies are defined in the Git repository.
Git branches with appropriate rights to users is maintained for releases in each environment. Read/write access, admin access to git repository, access to add access keys in repository, pull request based merge in main branch are some of the key features that is used in Bevel.

Key Management

Key Management is the process of overseeing the generation, exchange, storage, use and destruction of cryptographic keys. Key Management is an important consideration for blockchain as all transactions in blockchain are signed using digital keys. Loss of keys can lead to financial loss as well as brand impact to the organization conducting the transaction.

Hyperledger Bevel uses Hashicorp Vault [https://www.vaultproject.io/] to hold secrets that are used by the DLT/Blockchain platform. A secret is anything that you want to tightly control access to (e.g. API keys, passwords, certificates). Vault provides a unified interface to any secret, while providing tight access control and recording a detailed audit log. Hashicorp Vault [https://www.vaultproject.io/] provides an abstraction on top of a Cloud KMS and does not create Cloud Platform lock-in.
See the Platform-Specific Reference Guides for specific details on the structure of the Vault. Vault is a pre-requisite for Bevel and should be configured and available before the automation is triggered.

Identity and Access Management (IAM)

Identity and Access Management (IAM) is the process of defining and managing the access privileges of network users and determining how users are granted or denied those privileges. IAM is the front door for all blockchain applications and hence has to be designed upfront to reduce risk. Strong authentication techniques and user level permissioning will help shift left some of the security concerns.

Hyperledger Bevel does not provide IAM controls. This is to be developed and applied by the application/use-case.

Certificate Authority (CA)

A Certificate Authority dispenses certificates to different actors. These certificates are digitally signed by the CA and bind together the actor with the actor’s public key (and optionally with a comprehensive list of properties). As a result, if one trusts the CA (and knows its public key), it can trust that the specific actor is bound to the public key included in the certificate, and owns the included attributes, by validating the CA’s signature on the actor’s certificate.

For test and dev environments, Hyperledger Bevel generates certificates and keys (for all Platforms) and also provides CA servers (Fabric only).

For production use, generation of certificates, keys and CA servers via Hyperledger Bevel is not recommended. The existing certificates and keys can be placed in Vault in the paths described under subsections of Platform-Specific Reference Guides .

Policies/Operations

Policies/Operations refers to the actual security policies that an organization may/should have governing their business processes, operations and management.

This part of the reference architecture is out of scope for Hyperledger Bevel.

DevOps Services

These services enable the development of on-ledger (e.g. smart contracts) or off-ledger services based on SDK’s and IDE’s (e.g. Web APIs) including the maintenance, monitoring and administration of the distributed ledger and its on- and off-ledger services.

Version Management

Version Management capabilities enable change control of smart contract and decentralized applications. This enables developers and operators to track different version of the code as well as releases.

Hyperledger Bevel utilizes Git as the version management tool.

Configuration Management

Configuration management involves automation of scripts and ad-hoc practices in a consistent, reliable and secure way. Configuration Management enables operators to set-up DLT/Blockchain networks idempotently by using minimum configuration changes.

Hyperledger Bevel utilizes Ansible for configuration management. Ansible features a state driven, goal oriented resource model that describes the desired state of computer systems and services, not the paths to get them to this state. No matter what state a system is in, Ansible understands how to transform it to the desired state (and also supports a “dry run” mode to preview needed changes). This allows reliable and repeatable IT infrastructure configuration, avoiding the potential failures from scripting and script-based solutions that describe explicit and often irreversible actions rather than the end goal.

Kubernetes Deploy/Operate

Kubernetes Deploy/Operate consists of the services that are used to deploy desired state of various services on Kubernetes clusters. It is also used for maintenance and operations of these services.

Hyperledger Bevel uses Helm to achieve this. Helm uses a packaging format called charts. A chart is a collection of files that describe a related set of Kubernetes resources. A single chart might be used to deploy something simple, like a memcached pod, or something complex, like a full web app stack with HTTP servers, databases, caches, and so on, which in our case, is the desired blockchain platform. While using helm, we can deploy a set of services and deployments together as a release.

Infrastructure as Code

Infrastructure as Code (IaC) is the process of managing and provisioning cloud hardware through machine-readable definition files, rather than physical hardware configuration or interactive configuration tools.
IaC can be versioned and hence, maintained easily and can be used to deploy cloud environments idempotently.

This part of the reference architecture is out of scope for Hyperledger Bevel.

Build, Test, and Artifact Management

Build, Test, and Artifact Management capabilities enable continuous delivery management by ensuring automation of the build and deployment of artefacts.

Hyperledger Bevel uses TravisCI for running static tests, building and storing of Docker images.
Jenkins Pipelines (as code) are also available for continuous deployment/reset of DLT network.
Artefact management is not implemented yet, but GitHub Releases can be used for this.

Delivery Management

Delivery Management is the process where all software, artifacts and data from disparate tools used to move a product or feature from initial idea to max adoption are integrated into a unified common data layer, with the key information connected and easily accessible, giving each individual and team an unprecedented level of insight into bottlenecks and inefficiencies dramatically improving the speed at which better software gets to users safely.

As it is opensource and a Hyperledger Foundation project, Hyperledger Bevel integrates with GitHub for reporting and tracking new features, bugs/issues and releases. Bevel uses ReadTheDocs for sharing documentation.
In specific implementations, Hyperledger Bevel can be integrated with tools like Jira and Confluence.

Presentation Services

The presentation services specify how the application will be provided to the end-user. It also defines the on-ledger and off-ledger services and capabilities via different channels.

This part of the reference architecture is out of scope for Hyperledger Bevel and will be determined by the application using Bevel.

Integration Services

These are combination of the services to interact with on- and off-ledger services via APIs or ledger protocols including runtime and operations services.

DLT Integration

DLT integration refers to how the presentation services will talk to the DLT Platform. This will depend on the presentation service as such.

Hyperledger Bevel provides a sample application Supplychain, which uses Express Nodejs API as the integration layer to talk to the underlying DLT platform.
Each DLT/Blockchain platform also enables this by providing SDKs or APIs themselves.

Application Integration

Application Integration refers to how the application will talk to different components of the same application.

This part of the reference architecture is out of scope for Hyperledger Bevel and will be determined by the application using Bevel.

External Integration

External integration is required when the blockchain application interfaces with systems outside of the application or DLT platform.

This part of the reference architecture is out of scope for Hyperledger Bevel and will be determined by the application using Bevel.

Distributed Data Platforms

Distributed Data Platforms form the core of any distributed architecture solution. Hyperledger Bevel aims to support both Distributed Ledgers and Distributed Databases.
Bevel currently supports DLT/Blockchain Platforms: Corda [https://docs.corda.net/], Hyperledger Fabric [https://hyperledger-fabric.readthedocs.io], Hyperledger Indy [https://hyperledger-indy.readthedocs.io/en/latest/], Hyperledger Besu [https://besu.hyperledger.org/en/stable/], and Quorum [https://www.goquorum.com/].

Infrastructure Services

Infrastructure services refer to the various services needed to run or deploy the different services of a distributed ledger architecture.

Cloud Providers

A Cloud Provider is a company that delivers cloud computing based services with features like scalibility and easy maintainance.

Hyperledger Bevel is built on Kubernetes, so will run on any Cloud provider providing Kubernetes as a service; this includes private and hybrid clouds.

Container Services

Container services allows users to deploy and manage containers using container based virtualization. Containers allow a developer to package up an application with all of the parts it needs, such as libraries and other dependencies, and ship it all out as one package.

Hyperledger Bevel uses 2 containerization technologies: Docker and Kubernetes.
Kubernetes (K8s) is an open-source system for automating deployment, scaling, and management of containerized applications.
Docker is a tool designed to make it easier to create, deploy, and run applications by using containers.

Backup/Restore

Disaster recovery involves a set of policies, tools and procedures to enable the recovery of vital technology infrastructure and systems following a natural or human-induced disaster. Even though blockchain applications are self replicating, complete auto recovery is not always possible. Therefore it is important to have guidelines around backing up the data in a distributed store and restoring it using a conventional restoring mechanism. Backup is the process of copying and archiving data. Restore is the process of returning data that has been lost, stolen or damaged from secondary storage.

This part of the reference architecture is out of scope for Hyperledger Bevel.

Other Data Services

Data services are related to on-ledger storage and data processing.

This part of the reference architecture is out of scope for Hyperledger Bevel.

Platform-Specific Reference Guides

	Corda Enterprise Architecture Reference

	Certificate Paths on Vault for Corda Enterprise

	Corda Opensource Architecture Reference

	Certificate Paths on Vault for Corda Network

	Hyperledger Fabric Architecture Reference

	Certificate Paths on Vault for Fabric Network

	Hyperledger Indy Architecture Reference

	Certificate Paths on Vault for Indy Network

	Quorum Architecture Reference

	Certificate Paths on Vault for Quorum Network

	Hyperledger Besu Architecture Reference

	Certificate Paths on Vault for Hyperledger Besu Network

 Corda Enterprise Architecture Reference

Corda Enterprise Architecture Reference

Kubernetes

Peer Nodes

The following diagram shows how Corda peer nodes will be deployed on your Kubernetes instance.

[image: ../_images/corda-ent-node.png]Figure: R3 Corda Enterprise Kubernetes Deployment - Peers

Notes:

	Pods are shown in blue in the diagram.

	Certificates are mounted as in-memory volumes from the Vault.

	The h2 database is a separate pod running in the same namespace. In future release, PostgreSQL will be implemented as well.

	All storage uses a Kubernetes Persistent Volume.

	Release 0.6.0.0 does not implement Corda firewall components. These will be implemented in later releases based on demand.

Support Services

The following diagram shows how the Corda Enterprise Network Map Services (Identity Manager, Networkmap, Signer and Notary) will be deployed on your Kubernetes instance(s).

[image: ../_images/corda-ent-support-services.png]Figure: R3 Corda Kubernetes Deployment - CENM Services

Notes:

	Pods are shown in blue in the diagram.

	Certificates are mounted as in-memory volumes from the Vault.

	All CENM pods (except Notary) have separate H2 volume for data storage. In future release, PostgreSQL will be implemented as well.

	Notary service has a separate H2 pod for data storage. In future release, PostgreSQL will be implemented as well.

	All storage uses a Kubernetes Persistent Volume.

	Release 0.6.0.0 implements Notary in the same namespace as other CENM services. They will be separated when HA Notary is implemented in later releases.

Components

[image: ../_images/hyperledger-bevel-corda-ent.png]Figure: Corda Enterprise Components

Docker Images

For Corda Enterprise, the corda_ent_node and corda_ent_firewall docker images should be built and put in a private docker registry. Please follow these instructions [https://github.com/Accenture-BAF/corda-kubernetes-deployment/tree/master/docker-images] to build docker images for Corda Enterprise.

The official Corda images are available on Docker Hub [https://hub.docker.com/u/corda]. These are evaluation only, for production implementation, please aquire licensed images from R3, upload them into your private docker registry and update the tags accordingly.

Following Corda Docker Images are used and needed by Hyperledger Bevel.

	Corda Network Map Service [https://hub.docker.com/r/corda/enterprise-networkmap] (Built as per these instructions [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/images])

	Corda Identity Manager Service [https://hub.docker.com/r/corda/enterprise-identitymanager]

	Corda Signer [https://hub.docker.com/r/corda/enterprise-signer]

	Corda PKITool [https://hub.docker.com/r/corda/enterprise-pkitool] (Built as per these instructions [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/images])

	Corda Notary [https://hub.docker.com/r/corda/notary] (Built as per these instructions [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/images])

	Corda Node (Built as per these instructions [https://github.com/Accenture-BAF/corda-kubernetes-deployment/tree/master/docker-images])

	Corda Firewall (Built as per these instructions [https://github.com/Accenture-BAF/corda-kubernetes-deployment/tree/master/docker-images])

Ansible Playbooks

Detailed information on ansible playbooks can be referred here and the execution process can be referred here.

Helm Charts

Detailed information on helm charts can be referred here.

[bookmark: vault-config]

Vault Configuration WIP

Hyperledger Bevel stores their crypto and credentials immediately within the secret secrets engine.
Optionally, secret_path can be set on the network.yaml to change the secret engine from the default secretsv2/.

	Crypto Material Path
	Credentials Path

	secretsv2/<servicename>
	secretsv2/<servicename>/credentials

	secrets/notary/credentials/database - Contains password for notary database for admin and user:

sa="newh2pass" notaryUser1="xyz1234" notaryUser2="xyz1236"

	secrets/notary/credentials/keystore - Contains password for notary keystore:

keyStorePassword="newpass" trustStorePassword="newpass" defaultTrustStorePassword"=trustpass" defaultKeyStorePassword="cordacadevpass" sslkeyStorePassword="sslpass" ssltrustStorePassword="sslpass"

	secrets/notary/credentials/networkmappassword - Contains password for networkmap:

sa="admin"

	secrets/notary/credentials/rpcusers - Contains password for rpc users:

notaryoperations="usera" notaryoperations1="usera" notaryoperations2="usera" notaryadmin="usera"

	secrets/notary/credentials/vaultroottoken - Contains password for vault root token in the format:

rootToken="<vault.root_token>"

	secrets/<org-name>/credentials/database - Contains password for notary database for admin and user:

sa="newh2pass" <org-name>User1="xyz1234" <org-name>User2="xyz1236"

	secrets/<org-name>/credentials/keystore - Contains password for notary keystore:

keyStorePassword="newpass" trustStorePassword="newpass" defaultTrustStorePassword"=trustpass" defaultKeyStorePassword="cordacadevpass" sslkeyStorePassword="sslpass" ssltrustStorePassword="sslpass"

	secrets/<org-name>/credentials/networkmappassword - Contains password for networkmap:

sa="admin"

	secrets/<org-name>/credentials/rpcusers - Contains password for rpc users:

<org-name>operations="usera" <org-name>operations1="usera" <org-name>operations2="usera" <org-name>admin="usera"

	secrets/<org-name>/credentials/vaultroottoken - Contains password for vault root token in the format:

rootToken="<vault.root_token>"

The complete Corda Enterprise Certificate and key paths in the vault can be referred here.

 Certificate Paths on Vault for Corda Enterprise

Certificate Paths on Vault for Corda Enterprise

	All values must be Base64 encoded files as Bevel decodes them.

	Optionally, secret_path can be set on the network.yaml to change the secret engine from the default secretsv2/.

For CENM

	Path (on Vault secrets)
	Crypto-material
	Type

	/secretsv2/cenm_orgname_lowercase/root/certs
	root-key-store.jks
	Root keystore

	/secretsv2/cenm_orgname_lowercase/root/certs
	corda-ssl-trust-store.jks
	SSL certificates truststore

	/secretsv2/cenm_orgname_lowercase/root/certs
	network-root-truststore.jks
	Network Root certificates truststore

	/secretsv2/cenm_orgname_lowercase/root/certs
	corda-ssl-root-keys.jks
	SSL Root keystore

	/secretsv2/cenm_orgname_lowercase/root/certs
	tls-crl-signer-key-store.jks
	Keystore containing tlscrlsigner key

	/secretsv2/cenm_orgname_lowercase/root/certs
	subordinate-key-store.jks
	Keystore containing subordinateCA key

	/secretsv2/cenm_orgname_lowercase/signer_service_name/certs
	corda-ssl-signer-keys.jks
	Signer keystore

	/secretsv2/cenm_orgname_lowercase/signer_service_name/certs
	identity-manager-key-store.jks
	Idman keystore

	/secretsv2/cenm_orgname_lowercase/signer_service_name/certs
	network-map-key-store.jks
	Networkmap keystore

	/secretsv2/cenm_orgname_lowercase/networkmap_service_name/certs
	corda-ssl-network-map-keys.jks
	Networkmap SSL keystore

	/secretsv2/cenm_orgname_lowercase/networkmap_service_name/tlscerts
	tlscacerts
	Networkmap Ambassador Certificate

	/secretsv2/cenm_orgname_lowercase/networkmap_service_name/tlscerts
	tlskey
	Networkmap Ambassador Private key

	/secretsv2/cenm_orgname_lowercase/idman_service_name/crls
	tls.crl
	TLS CRL

	/secretsv2/cenm_orgname_lowercase/idman_service_name/crls
	ssl.crl
	SSL CRL

	/secretsv2/cenm_orgname_lowercase/idman_service_name/crls
	root.crl
	Network Root CRL

	/secretsv2/cenm_orgname_lowercase/idman_service_name/crls
	subordinate.crl
	Subordinate CRL

	/secretsv2/cenm_orgname_lowercase/idman_service_name/certs
	corda-ssl-identity-manager-keys.jks
	Idman SSL keystore

	/secretsv2/cenm_orgname_lowercase/idman_service_name/tlscerts
	tlscacerts
	Idman Ambassador Certificate

	/secretsv2/cenm_orgname_lowercase/idman_service_name/tlscerts
	tlskey
	Idman Ambassador Private key

	/secretsv2/cenm_orgname_lowercase/notary_service_name/certs/nodekeystore
	nodekeystore.jks
	Notary keystore

	/secretsv2/cenm_orgname_lowercase/notary_service_name/certs/sslkeystore
	sslkeystore.jks
	SSL Keystore

	/secretsv2/cenm_orgname_lowercase/notary_service_name/certs/truststore
	truststore.jks
	Trust keystore

	/secretsv2/cenm_orgname_lowercase/notary_service_name/certs/networkparam
	network-parameters-initial
	Initial network-parameters file generated during notary registration

	/secretsv2/cenm_orgname_lowercase/notary_service_name/nodeInfo
	nodeInfoFile
	Notary node info file contents

	/secretsv2/cenm_orgname_lowercase/notary_service_name/nodeInfo
	nodeInfoName
	Notary node info filename with hash

	/secretsv2/cenm_orgname_lowercase/notary_service_name/tlscerts
	tlscacerts
	Notary Ambassador Certificate

	/secretsv2/cenm_orgname_lowercase/notary_service_name/tlscerts
	tlskey
	Notary Ambassador Private key

	/secretsv2/cenm_orgname_lowercase/credentials/keystore
	idman
	Idman keystore password

	/secretsv2/cenm_orgname_lowercase/credentials/keystore
	networkmap
	Networkmap keystore password

	/secretsv2/cenm_orgname_lowercase/credentials/keystore
	subordinateCA
	SubordinateCA keystore password

	/secretsv2/cenm_orgname_lowercase/credentials/keystore
	rootCA
	Root keystore password

	/secretsv2/cenm_orgname_lowercase/credentials/keystore
	tlscrlsigner
	Signer keystore password

	/secretsv2/cenm_orgname_lowercase/credentials/keystore
	keyStorePassword
	Notary keystore password

	/secretsv2/cenm_orgname_lowercase/credentials/truststore
	rootCA
	Network root truststore password

	/secretsv2/cenm_orgname_lowercase/credentials/truststore
	ssl
	SSL truststore password

	/secretsv2/cenm_orgname_lowercase/credentials/truststore
	trustStorePassword
	Notary truststore password

	/secretsv2/cenm_orgname_lowercase/credentials/ssl
	idman
	Idman sslkeystore password

	/secretsv2/cenm_orgname_lowercase/credentials/ssl
	networkmap
	Networkmap sslkeystore password

	/secretsv2/cenm_orgname_lowercase/credentials/ssl
	signer
	Signer sslkeystore password

	/secretsv2/cenm_orgname_lowercase/credentials/ssl
	root
	Corda root sslkeystore password

	/secretsv2/cenm_orgname_lowercase/credentials/ssl
	auth
	Auth sslkeystore password

	/secretsv2/cenm_orgname_lowercase/credentials/cordapps
	repo_username
	Cordapps repository username

	/secretsv2/cenm_orgname_lowercase/credentials/cordapps
	repo_password
	Cordapps repository password

For Node/Peer Organization

	Path (orgname_lowercase crypto material)
	Crypto-material
	Type

	/secretsv2/orgname_lowercase/peer_name/certs/idman_service_name
	idman_service_name.crt
	Idman Ambassador Certificate

	/secretsv2/orgname_lowercase/peer_name/certs/networkmap_service_name
	networkmap_service_name.crt
	Networkmap Ambassador Certificate

	/secretsv2/orgname_lowercase/peer_name/certs/nodekeystore
	nodekeystore.jks
	Node keystore

	/secretsv2/orgname_lowercase/peer_name/certs/sslkeystore
	sslkeystore.jks
	SSL Keystore

	/secretsv2/orgname_lowercase/peer_name/certs/truststore
	truststore.jks
	Trust keystore

	/secretsv2/orgname_lowercase/peer_name/certs/firewall
	firewallca.jks
	FirewallCA keystore

	/secretsv2/orgname_lowercase/peer_name/certs/firewall
	float.jks
	Float keystore

	/secretsv2/orgname_lowercase/peer_name/certs/firewall
	bridge.jks
	Bridge keystore

	/secretsv2/orgname_lowercase/peer_name/certs/firewall
	trust.jks
	Truststore keystore

	/secretsv2/orgname_lowercase/peer_name/root/certs
	network-root-truststore.jks
	Network Root certificates truststore

	/secretsv2/orgname_lowercase/peer_name/tlscerts
	tlscacerts
	Node Ambassador Certificate

	/secretsv2/orgname_lowercase/peer_name/tlscerts
	tlskey
	Node Ambassador Private key

	/secretsv2/orgname_lowercase/peer_name/credentials
	root
	Network root truststore password

	/secretsv2/orgname_lowercase/peer_name/credentials
	truststore
	Node truststore password

	/secretsv2/orgname_lowercase/peer_name/credentials
	keystore
	Node keystore password

	/secretsv2/orgname_lowercase/peer_name/credentials
	firewallCA
	FirewallCA keystore and corresponding truststore password

	/secretsv2/orgname_lowercase/peer_name/credentials
	float
	Float keystore password

	/secretsv2/orgname_lowercase/peer_name/credentials
	bridge
	Bridge keystore password

	/secretsv2/orgname_lowercase/peer_name/credentials
	peer_name
	Rpc user password

	/secretsv2/orgname_lowercase/peer_name/credentials
	repo_username
	Cordapps repository username

	/secretsv2/orgname_lowercase/peer_name/credentials
	repo_password
	Cordapps repository password

 Corda Opensource Architecture Reference

Corda Opensource Architecture Reference

Kubernetes

Peer Nodes

The following diagram shows how Corda peer nodes will be deployed on your Kubernetes instance.

[image: ../_images/corda-kubernetes-node.png]Figure: R3 Corda Kubernetes Deployment - Peers

Notes:

	Pods are shown in blue in the diagram.

	Certificates are mounted as in-memory volumes from the vault.

	The node-pod runs corda.jar.

	The h2 database is a separate pod running in the same namespace

	All storage uses a Kubernetes Persistent Volume.

Support Services

The following diagram shows how the Corda Support Services (Doorman, Networkmap and Notary) will be deployed on your Kubernetes instance.

[image: ../_images/corda-support-services.png]Figure: R3 Corda Kubernetes Deployment - Support Services

Notes:

	Pods are shown in blue in the diagram.

	Certificates are mounted as in-memory volumes from the vault.

	Doorman and Networkmap services have a separate MongoDB pod for data storage.

	Notary service has a separate H2 pod for data storage.

	All storage uses a Kubernetes Persistent Volume.

Components

[image: ../_images/hyperledger-bevel-corda.png]Figure: Corda Components

Docker Images

Hyperledger Bevel creates/provides a set of Corda Docker images that can be found in the GitHub Repo [https://github.com/orgs/hyperledger/packages?repo_name=bevel] or can be built as per configuring prerequisites.
The following Corda Docker Images are used and needed by Hyperledger Bevel.

	Corda Network Map Service [https://github.com/hyperledger/bevel/pkgs/container/bevel-networkmap-linuxkit]

	Corda Doorman Service [https://github.com/hyperledger/bevel/pkgs/container/bevel-doorman-linuxkit]

	Corda Node [https://github.com/hyperledger/bevel/pkgs/container/bevel-corda]

Ansible Playbooks

Detailed information on ansible playbooks can be referred here and the execution process can be referred here

Helm Charts

Detailed information on helm charts can be referred here

[bookmark: vault-config]

Vault Configuration

Hyperledger Bevel stores their crypto and credentials immediately within the secret secrets engine.
Optionally, secret_path can be set on the network.yaml to change the secret engine from the default secretsv2/.

	Crypto Material Path
	Credentials Path

	secretsv2/<servicename>
	secretsv2/<servicename>/credentials

	secrets/doorman/credentials/mongodb - Contains password for doorman mongodb database.

mongodbPassword="admin"

	secrets/doorman/credentials/userpassword - Contains password for doorman mongodb database user:

sa="newdbnm"

	secrets/networkmap/credentials/mongodb - Contains password for networkmap mongodb database:

mongodbPassword="newdbnm"

	secrets/networkmap/credentials/userpassword - Contains password for networkmap mongodb database user:

sa="admin"

	secrets/notary/credentials/database - Contains password for notary database for admin and user:

sa="newh2pass" notaryUser1="xyz1234" notaryUser2="xyz1236"

	secrets/notary/credentials/keystore - Contains password for notary keystore:

keyStorePassword="newpass" trustStorePassword="newpass" defaultTrustStorePassword"=trustpass" defaultKeyStorePassword="cordacadevpass" sslkeyStorePassword="sslpass" ssltrustStorePassword="sslpass"

	secrets/notary/credentials/networkmappassword - Contains password for networkmap:

sa="admin"

	secrets/notary/credentials/rpcusers - Contains password for rpc users:

notaryoperations="usera" notaryoperations1="usera" notaryoperations2="usera" notaryadmin="usera"

	secrets/notary/credentials/vaultroottoken - Contains password for vault root token in the format:

rootToken="<vault.root_token>"

	secrets/<org-name>/credentials/database - Contains password for notary database for admin and user:

sa="newh2pass" <org-name>User1="xyz1234" <org-name>User2="xyz1236"

	secrets/<org-name>/credentials/keystore - Contains password for notary keystore:

keyStorePassword="newpass" trustStorePassword="newpass" defaultTrustStorePassword"=trustpass" defaultKeyStorePassword="cordacadevpass" sslkeyStorePassword="sslpass" ssltrustStorePassword="sslpass"

	secrets/<org-name>/credentials/networkmappassword - Contains password for networkmap:

sa="admin"

	secrets/<org-name>/credentials/rpcusers - Contains password for rpc users:

<org-name>operations="usera" <org-name>operations1="usera" <org-name>operations2="usera" <org-name>admin="usera"

	secrets/<org-name>/credentials/vaultroottoken - Contains password for vault root token in the format:

rootToken="<vault.root_token>"

The complete Certificate and key paths in the vault can be referred here

 Certificate Paths on Vault for Corda Network

Certificate Paths on Vault for Corda Network

	Secrets engine kv path for each organization services (networkmap, doorman, notary, nodes) are enabled via the automation.

For Networkmap

	Path (networkmap crypto material)
	Crypto-material
	Type

	/networkmap.name_lowercase/certs
	networkmap.jks
	Certificate

	/networkmap.name_lowercase/certs
	cacerts
	Certificate

	/networkmap.name_lowercase/certs
	keystore
	Certificate

	/networkmap.name_lowercase/certs
	rootcakey
	Private key

	/networkmap.name_lowercase/tlscerts
	tlscacerts
	Certificate

	/networkmap.name_lowercase/tlscerts
	tlskey
	Private key

For Doorman

	Path (doorman crypto material)
	Crypto-material
	Type

	/doorman.name_lowercase/certs
	doorman.jks
	Certificate

	/doorman.name_lowercase/certs
	cacerts
	Certificate

	/doorman.name_lowercase/certs
	keystore
	Certificate

	/doorman.name_lowercase/certs
	rootcakey
	private key

	/doorman.name_lowercase/tlscerts
	tlscacerts
	Certificate

	/doorman.name_lowercase/tlscerts
	tlskey
	Private key

For Notary organization

	Path (notary crypto material)
	Crypto-material
	Type

	/notary.name_lowercase/certs
	Notary.cer
	Certificate

	/notary.name_lowercase/certs
	Notary.key
	Private key

	/notary.name_lowercase/certs/customnodekeystore
	nodekeystore.jks
	Certificate

	/notary.name_lowercase/certs/doorman
	doorman.crt
	Certificate

	/notary.name_lowercase/certs/networkmap
	networkmap.crt
	Certificate

	/notary.name_lowercase/certs/networkmaptruststore
	network-map-truststore
	Certificate

	/notary.name_lowercase/certs/nodekeystore
	nodekeystore.jks
	Certificate

	/notary.name_lowercase/certs/sslkeystore
	sslkeystore.jks
	Certificate

	/notary.name_lowercase/certs/truststore
	truststore.jks
	Certificate

	/notary.name_lowercase/tlscerts
	tlscacerts
	Certificate

	/notary.name_lowercase/tlscerts
	tlskey
	Private key

For Node/Peer Organization

	Path (node.name_lowercase crypto material)
	Crypto-material
	Type

	/node.name_lowercase/certs
	node.name_lowercase.cer
	Certificate

	/node.name_lowercase/certs
	node.name_lowercase.key
	Private key

	/node.name_lowercase/certs/customnodekeystore
	nodekeystore.jks
	Certificate

	/node.name_lowercase/certs/doorman
	doorman.crt
	Certificate

	/node.name_lowercase/certs/networkmap
	networkmap.crt
	Certificate

	/node.name_lowercase/certs/networkmaptruststore
	network-map-truststore
	Certificate

	/node.name_lowercase/certs/nodekeystore
	nodekeystore.jks
	Certificate

	/node.name_lowercase/certs/sslkeystore
	sslkeystore.jks
	Certificate

	/node.name_lowercase/certs/truststore
	truststore.jks
	Certificate

	/node.name_lowercase/tlscerts
	tlscacerts
	Certificate

	/node.name_lowercase/tlscerts
	tlskey
	Private key

 Hyperledger Fabric Architecture Reference

Hyperledger Fabric Architecture Reference

Kubernetes

Peer Nodes

The following diagram shows how Hyperledger Fabric peer nodes will be deployed on your Kubernetes instance.

[image: ../_images/hyperledger-fabric-kubernetes-deployment-peers.png]Figure: Hyperledger Fabric Kubernetes Deployment - Peers

Notes:

	Pods are shown in blue in the diagram.

	Each peer pod will have both fabric-peer and fabric-couchdb containers running. Since they are in the same pod, Kubernetes always schedules them on the same VM and they can communicate to each other through localhost. This guarantees minimal latency between them.

	Host VM’s Docker socket is attached to peer pod so it can create chaincode containers. Kubernetes is not aware of these containers.

	TLS and MSP certificates are mounted as in-memory volumes from the Vault.

	The storage uses a Kubernetes Persistent Volume.

Orderer Nodes

The following diagram shows how Hyperledger Fabric orderer will be deployed on your Kubernetes instance.

[image: ../_images/hyperledger-fabric-kubernetes-deployment-orderer.png]Figure: Hyperledger Fabric Kubernetes Deployment - Orderer

Notes:

	Pods are shown in blue in the diagram.

	TLS and MSP certificates are mounted as in-memory volumes from the Vault.

	The storage uses a Kubernetes Persistent Volume.

Components

[image: ../_images/hyperledger-bevel-fabric.png]Figure: Hyperledger Fabric Components

Docker Images

Hyperledger Bevel uses the officially published Hyperledger Fabric Docker images from hub.docker.com [https://hub.docker.com/search?q=hyperledger%2Ffabric&type=image]. The following Hyperledger Fabric Docker Images are used by Hyperledger Bevel.

	fabric-ca [https://hub.docker.com/r/hyperledger/fabric-ca] - Hyperledger Fabric Certificate Authority

	fabric-couchdb [https://hub.docker.com/r/hyperledger/fabric-couchdb] - CouchDB for Hyperledger Fabric Peer

	fabric-kafka [https://hub.docker.com/r/hyperledger/fabric-kafka] - Kafka for Hyperledger Fabric Orderer

	fabric-orderer [https://hub.docker.com/r/hyperledger/fabric-orderer] - Hyperledger Fabric Orderer

	fabric-peer [https://hub.docker.com/r/hyperledger/fabric-peer] - Hyperledger Fabric Peer

	fabric-zookeeper [https://hub.docker.com/r/hyperledger/fabric-zookeeper] - Zookeeper for Hyperledger Fabric Orderer

Ansible Playbooks

Detailed information on ansible playbooks can be referred here and the execution process can be referred here

Helm Charts

Detailed information on helm charts can be referred here

[bookmark: vault-config]

Vault Configuration

Hyperledger Bevel stores their crypto and credentials immediately within the secret secrets engine.
Optionally, secret_path can be set on the network.yaml to change the secret engine from the default secretsv2/.

	Crypto Material Path
	Credentials Path

	secretsv2/crypto
	secretsv2/credentials

	secretsv2/credentials/ordererOrganizations/<orderer-org>/ca - Contains password for the Orderer CA Bootstrap user in the format:

user="${ORDERER_NAMESPACE}-adminpw

	secretsv2/credentials/peerOrganizations/<org1>/ca - Contains password for the Org Peers CA Bootstrap user in the format:

user="${NAMESPACE}-adminpw

	secretsv2/credentials/peerOrganizations/<org1>/<peern>couchdb - Contains the password for the Peer’s CouchDB user in the format:

pass="${NAMESPACE}-peer-${n}-adminpw

The complete Certificate and key paths in the vault can be referred here.

 Certificate Paths on Vault for Fabric Network

Certificate Paths on Vault for Fabric Network

	Optionally, secret_path can be set on the network.yaml to change the secret engine from the default secretsv2/.

For each channel

	Path
	Key (for Vault)
	Type

	/secretsv2/crypto/ordererOrganizations/
	genesisBlock
	Genesis

For each orderer organization

	Path
	Key (for Vault)
	Type

	/secretsv2/crypto/ordererOrganizations/orgname_lowercase-net/ca/
	ca.orgname_lowercase-net-cert.pem
	Certificate

	/secretsv2/crypto/ordererOrganizations/orgname_lowercase-net/ca/
	orgname_lowercase-net-CA.key
	Private key

	/secretsv2/crypto/ordererOrganizations/orgname_lowercase-net/orderers/orderer.orgname_lowercase-net/msp/
	admincerts
	Certificate

	/secretsv2/crypto/ordererOrganizations/orgname_lowercase-net/orderers/orderer.orgname_lowercase-net/msp/
	cacerts
	Certificate

	/secretsv2/crypto/ordererOrganizations/orgname_lowercase-net/orderers/orderer.orgname_lowercase-net/msp/
	keystore
	Certificate

	/secretsv2/crypto/ordererOrganizations/orgname_lowercase-net/orderers/orderer.orgname_lowercase-net/msp/
	signcerts
	Certificate

	/secretsv2/crypto/ordererOrganizations/orgname_lowercase-net/orderers/orderer.orgname_lowercase-net/msp/
	tlscacerts
	Certificate

	/secretsv2/crypto/ordererOrganizations/orgname_lowercase-net/orderers/orderer.orgname_lowercase-net/tls/
	ca.crt
	Certificate

	/secretsv2/crypto/ordererOrganizations/orgname_lowercase-net/orderers/orderer.orgname_lowercase-net/tls/
	server.key
	Private key

	/secretsv2/crypto/ordererOrganizations/orgname_lowercase-net/orderers/orderer.orgname_lowercase-net/tls/
	server.crt
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/admin/msp/
	admincerts
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/admin/msp/
	keystore
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/admin/msp/
	signcerts
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/admin/msp/
	tlscacerts
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/admin/tls/
	ca.crt
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/admin/tls/
	client.crt
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/admin/tls/
	client.key
	Private Key

For each peer organization

	Path
	Key (for Vault)
	Type

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/ca/
	ca.orgname_lowercase-net-cert.pem
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/ca/
	orgname_lowercase-net-CA.key
	Private key

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/orderer/tls
	ca.crt
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/peers/peername_lowercase.orgname_lowercase-net/msp/
	admincerts
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/peers/peername_lowercase.orgname_lowercase-net/msp/
	keystore
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/peers/peername_lowercase.orgname_lowercase-net/msp/
	signcerts
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/peers/peername_lowercase.orgname_lowercase-net/msp/
	tlscacerts
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/peers/peername_lowercase.orgname_lowercase-net/tls/
	ca.crt
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/peers/peername_lowercase.orgname_lowercase-net/tls/
	server.key
	Private key

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/peers/peername_lowercase.orgname_lowercase-net/tls/
	server.crt
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/admin/msp/
	admincerts
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/admin/msp/
	keystore
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/admin/msp/
	signcerts
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/admin/msp/
	tlscacerts
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/admin/tls/
	ca.crt
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/admin/tls/
	client.crt
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/admin/tls/
	client.key
	Private Key

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/username_lowercase/msp/
	admincerts
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/username_lowercase/msp/
	cacerts
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/username_lowercase/msp/
	keystore
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/username_lowercase/msp/
	signcerts
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/username_lowercase/msp/
	tlscacerts
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/username_lowercase/tls/
	ca.crt
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/username_lowercase/tls/
	client.crt
	Certificate

	/secretsv2/crypto/peerOrganizations/orgname_lowercase-net/users/username_lowercase/tls/
	client.key
	Private Key

 Hyperledger Indy Architecture Reference

Hyperledger Indy Architecture Reference

Kubernetes

Peer Nodes

The following diagram shows how Hyperledger Indy peer nodes will be deployed on your Kubernetes instance.

[image: ../_images/hyperledger-indy-kubernetes-deployment-peers.png]Figure: Hyperledger Indy Kubernetes Deployment - Peers

Notes:

	Pods are shown in blue in the diagram.

	Each StatefulSet will have steward-node-init for initialization (read crypto from Vault) and steward-node containers running. Since they are in the same pod, Kubernetes always schedules them on the same VM and they can communicate to each other through localhost. This guarantees minimal latency between them.

	The storage uses a Kubernetes Persistent Volume.

Components

[image: ../_images/hyperledger-bevel-indy.png]Figure: Hyperledger Indy Components

Docker Images

Hyperledger Bevel creates/provides own Docker images, which are based on Ubuntu and consist with official Hyperledger Indy libraries (indy-plenum and indy-node).

	indy-cli [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/images/indy-cli] - Docker image contains Indy CLI, which is used to issue transactions again an Indy pool.

	indy-key-mgmt [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/images/indy-key-mgmt] - Docker image for indy key management, which generates identity crypto and stores it into Vault or displays it onto the terminal in json format.

	indy-node [https://github.com/hyperledger/bevel/tree/main/platforms/hyperledger-indy/images/indy-node] - Docker image of an Indy node (runs using a Steward identity).

Ansible Playbooks

Detailed information on ansible playbooks can be referred here and the execution process can be referred here.

Helm Charts

Detailed information on helm charts can be referred here.

[bookmark: vault-config]

Vault Configuration

Hyperledger Bevel stores their crypto immediately within the secret secrets engine.
The crypto is stored by each organization under /org_name_lowercase - it contains provate/public keys, dids and seeds.

The complete key paths in the vault can be referred here.

 Certificate Paths on Vault for Indy Network

Certificate Paths on Vault for Indy Network

For each organization

	Path
	Key (for Vault)
	Type

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/identity/private/
	seed
	String

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/identity/public/
	did
	String

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/node/private/private_keys/
	identity_name_lowercase.key_secret
	Private Key

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/node/private/bls_keys/
	bls_sk
	Secret Key

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/node/private/sig_keys/
	identity_name_lowercase.key_secret
	Private Key

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/node/public/public_keys/
	public-key
	Public Key

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/node/public/public_keys/
	identity_name_lowercase.key
	Public Key

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/node/public/bls_keys/
	bls_pk
	Public Key

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/node/public/bls_keys/
	bls-public-key
	Public Key

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/node/public/bls_keys/
	bls-key-pop
	Public Key

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/node/public/verif_keys/
	identity_name_lowercase.key
	Public Key

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/node/public/verif_keys/
	verification-key
	Verification Key

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/client/private/private_keys/
	identity_name_lowercase-1C.key_secret
	Private Key

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/client/private/sig_keys/
	identity_name_lowercase-1C.key_secret
	Private Key

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/client/public/public_keys/
	public-key
	Public Key

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/client/public/public_keys/
	identity_name_lowercase-1C.key
	Public Key

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/client/public/verif_keys/
	identity_name_lowercase-1C.key
	Public Key

	/org_name_lowercase/role (trustees / stewards / endorsers)/identity_name_lowercase/client/public/verif_keys/
	verification-key
	Verification Key

 Quorum Architecture Reference

Quorum Architecture Reference

Kubernetes

Nodes with Tessera

The following diagram shows how Quorum peer nodes with Tessera TM will be deployed on your Kubernetes instance.

[image: ../_images/quorum-tessera-node.png]Figure: Quorum Kubernetes Deployment - Tessera Peers

Notes:

	Pods are shown in blue in the diagram.

	Each peer pod will have three init-containers: certificates-init to read crypto from Vault, mysql-init to initialize MySQL DB and quorum-genesis-init-container to generate genesis block.

	Each peer pod will then have three containers: mysql-db, tessera and quorum containers running. Since they are in the same pod, Kubernetes always schedules them on the same VM and they can communicate to each other through localhost. This guarantees minimal latency between them.

	The storage uses a Kubernetes Persistent Volume.

Nodes with Constellation

The following diagram shows how Quorum peer nodes with Constellation TM will be deployed on your Kubernetes instance.

[image: ../_images/quorum-constellation-node.png]Figure: Quorum Kubernetes Deployment - Constellation Peers

Notes:

	Pods are shown in blue in the diagram.

	Each peer pod will have two init-containers: certificates-init to read crypto from Vault and quorum-genesis-init-container to generate genesis block.

	Each peer pod will then have two containers: constellation and quorum containers running. Since they are in the same pod, Kubernetes always schedules them on the same VM and they can communicate to each other through localhost. This guarantees minimal latency between them.

	The storage uses a Kubernetes Persistent Volume.

Components

[image: ../_images/hyperledger-bevel-quorum.png]Figure: Quorum Components

Docker Images

Hyperledger Bevel uses the officially published Quorum Docker images from hub.docker.com [https://hub.docker.com/u/quorumengineering]. The following Quorum Images are used by Hyperledger Bevel.

	quorum [https://hub.docker.com/r/quorumengineering/quorum] - Quorum Peer Node

	tessera [https://hub.docker.com/r/quorumengineering/tessera] - Tessera Transaction Manager

	constellation [https://hub.docker.com/r/quorumengineering/constellation] - Constellation Transaction Manager

Additionnally, following common images are also used:

	busybox [https://hub.docker.com/_/busybox] - Used for DB initialtization

	mysql-server [https://hub.docker.com/r/mysql/mysql-server] - Used as the DB for Tessera Transaction Manager

	alpine-utils [https://github.com/hyperledger/bevel/pkgs/container/bevel-alpine-utils] - Used as a utility to get crypto from Hashicorp Vault server

Ansible Playbooks

Detailed information on ansible playbooks can be referred here and the execution process can be referred here.

Helm Charts

Detailed information on helm charts can be referred here.

[bookmark: vault-config]

Vault Configuration

Hyperledger Bevel stores their crypto immediately in the Hashicorp Vault secrets engine.
The crypto is stored by each organization under path secretsv2/org_namespace - it contains node keys, keystore, passwords, TM keys, and CA certificates for proxy connections.
Optionally, secret_path can be set on the network.yaml to change the secret engine from the default secretsv2/.

The complete key paths in the Vault can be referred here.

 Certificate Paths on Vault for Quorum Network

Certificate Paths on Vault for Quorum Network

	Optionally, secret_path can be set on the network.yaml to change the secret engine from the default secretsv2/.

For IBFT/ RAFT

	Path
	Key Name
	Description

	secretsv2/{{component_ns}}/crypto/{{ peer_name }}/quorum
	nodekey
	Public Key (Identity for a node)

	secretsv2/{{component_ns}}/crypto/{{ peer_name }}/quorum
	keystore
	Private Key Data for a node

	secretsv2/{{component_ns}}/crypto/{{ peer_name }}/quorum
	db_user
	Username for Quorum keystore

	secretsv2/{{component_ns}}/crypto/{{ peer_name }}/quorum
	db_password
	Password for Quorum keystore

	secretsv2/{{component_ns}}/crypto/{{ peer_name }}/quorum
	geth_password
	Password for geth

For Tessera/Constellation

	Path
	Key Name
	Description

	secretsv2/{{ component_ns }}/crypto/{{ peer_name }}/transaction
	tm.pub
	Public key of Transaction manager

	secretsv2/{{component_ns}}/crypto/{{ peer_name }}/transaction
	tm.key
	Private key of Transaction manager

For Root Certificates

	Path
	Key Name
	Description

	secretsv2/{{ component_ns }}/crypto/{{ node_name }}/certs
	rootCA
	JKS(Java KeyStore) Initail Root CA Certificates

	secretsv2/{{ component_ns }}/crypto/{{ node_name }}/certs
	ambassadorcrt
	Certificate chain for Ambassador proxy

	secretsv2/{{ component_ns }}/crypto/{{ node_name }}/certs
	ambassadorkey
	Ambassador key

Details of Variables

	Variable
	Description

	component_ns
	Name of Component's Namespace

	peer_name
	Name of Peer

	node_name
	Name of Node

 Hyperledger Besu Architecture Reference

Hyperledger Besu Architecture Reference

Kubernetes

Nodes with Orion Transaction Manager

The following diagram shows how Besu peer nodes with Orion TM will be deployed on your Kubernetes instance.

[image: ../_images/besu-orion-node.png]Figure: Hyperledger Besu Kubernetes Deployment - Orion Peers

Notes:

	Pods are shown in blue in the diagram.

	Each peer pod will have two init-containers: certificates-init to read crypto from Vault and liveness-check to check that if the bootnode endpoint is available, only when bootnode is used.

	Each peer pod will then have two containers: orion and besu running. Since they are in the same pod, Kubernetes always schedules them on the same VM and they can communicate to each other through localhost. This guarantees minimal latency between them.

	The storage uses a Kubernetes Persistent Volume.

	In future releases, the levelDB PVC will be replaced by a containerised database.

Validator Nodes

The following diagram shows how Besu Validator nodes will be deployed on your Kubernetes instance.

[image: ../_images/besu-validator-node.png]Figure: Hyperledger Besu Kubernetes Deployment - Validators

Notes:

	Pods are shown in blue in the diagram.

	Each peer pod will have one init-containers: certificates-init to read crypto from Vault.

	Each peer pod will then have one container besu running.

	The storage uses a Kubernetes Persistent Volume for storing the besu data-dir.

Components

[image: ../_images/hyperledger-bevel-besu.png]Figure: Hyperledger Besu Components

Docker Images

Hyperledger Bevel uses the officially published Besu Docker images from hub.docker.com [https://hub.docker.com/u/hyperledger]. The following Besu Images are used by Hyperledger Bevel.

	besu [https://hub.docker.com/r/hyperledger/besu] - Besu Peer and Validator Node

	orion [https://hub.docker.com/r/pegasyseng/orion] - Orion Transaction Manager

Additionally, following common images are also used:

	alpine-utils [https://github.com/hyperledger/bevel/pkgs/container/bevel-alpine-utils] - Used as a utility to get crypto from Hashicorp Vault server

Ansible Playbooks

Detailed information on ansible playbooks can be referred here and the execution process can be referred here.

Helm Charts

Detailed information on helm charts can be referred here.

[bookmark: vault-config]

Vault Configuration

Hyperledger Bevel stores their crypto immediately in the Hashicorp Vault secrets engine.
The crypto is stored by each organization under path secretsv2/org_namespace - it contains node keys, keystore, passwords, TM keys, and CA certificates for proxy connections.
Optionally, secret_path can be set on the network.yaml to change the secret engine from the default secretsv2/.

The complete key paths in the Vault can be referred here.

 Certificate Paths on Vault for Hyperledger Besu Network

Certificate Paths on Vault for Hyperledger Besu Network

	Optionally, secret_path can be set on the network.yaml to change the secret engine from the default secretsv2/.

For IBFT2 WIP

	Path
	Key Name
	Description

	secretsv2/{{component_ns}}/crypto/{{ peer_name }}/data
	key
	Private Key Data for a node

	secretsv2/{{component_ns}}/crypto/{{ peer_name }}/data
	key.pub
	Public Key (Identity for a node)

	secretsv2/{{component_ns}}/crypto/{{ peer_name }}/data
	nodeAddress
	Besu Node Address

For Orion

	Path
	Key Name
	Description

	secretsv2/{{ component_ns }}/crypto/{{ peer_name }}/orion
	key.pub
	Public key of Transaction manager

	secretsv2/{{component_ns}}/crypto/{{ peer_name }}/orion
	key
	Private key of Transaction manager

	secretsv2/{{component_ns}}/crypto/{{ peer_name }}/orion
	password
	Password for the Key

For Root Certificates

	Path
	Key Name
	Description

	secretsv2/{{ component_ns }}/crypto/{{ node_name }}/tls
	rootca_key
	Initial Root CA Key

	secretsv2/{{ component_ns }}/crypto/{{ node_name }}/tls
	rootca_pem
	Initial Root CA Certificates

	secretsv2/{{ component_ns }}/crypto/{{ node_name }}/tls
	ambassadorcrt
	Certificate chain for Ambassador proxy and Orion TLS

	secretsv2/{{ component_ns }}/crypto/{{ node_name }}/tls
	ambassadorkey
	Ambassador key

	for Ambassador proxy and Orion TLS
	
	

	secretsv2/{{ component_ns }}/crypto/{{ node_name }}/tls
	knownServer
	Common name and SHA256 digest of authorized privacy enclave

	secretsv2/{{ component_ns }}/crypto/{{ node_name }}/tls
	keystore
	Keystore (PKCS #12 format) Besu TLS Certificate and key

	secretsv2/{{ component_ns }}/crypto/{{ node_name }}/tls
	password
	Password to decrypt the Keystore

Details of Variables

	Variable
	Description

	component_ns
	Name of Component's Namespace

	peer_name
	Name of Peer

	component_name
	Name of Component

	node_name
	Name of Node

	component_auth
	Auth Name

 Commands Reference

Commands Reference

Below are various debugging commands that can be used

Kubectl related debugging

	To setup KUBECONFIG environment variable

export KUBECONFIG=PATH_TO_CLUSTER_KUBECONFIG_FILE
Ex. export KUBECONFIG=~/.kube/config
/root/.kube/config is the default KUBECONFIG path

	To check the cluster config file being used

kubectl config view

	To check the current context

kubectl config current-context

	To get all pods in a namespace

kubectl get pods -n NAMESPACE
Ex. kubectl get pods -n supplychain-net

	To get all pods in a cluster

kubectl get pods --all-namespaces

	To check description of resource type (pod/service/pvc/HelmRelease)

kubectl describe RESOURCE_TYPE RESOURCE_NAME -n NAMESPACE
Ex. kubectl describe pvc ca-server-db-svc -n carrier-net
Ex. kubectl describe sa vault-reviewer -n carrier-net

	To check logs of pod

kubectl logs POD_NAME -n NAMESPACE
Ex. kubectl logs flux-dev-123r45 -n default

	To check logs of container within a pod

kubectl logs POD_NAME -c CONTAINER_NAME -n NAMESPACE
Ex. kubectl logs ca-123r45 -c ca-certs-init -n carrier-net

	To execute a command in a running pod

kubectl exec POD_NAME -n NAMESPACE -- COMMAND_TO_EXECUTE
Ex. kubectl exec ca-tools-12345 -n carrier-net -- ls -a

	To execute a command in a container of a pod

kubectl exec POD_NAME -c CONTAINER_NAME -n NAMESPACE -- COMMAND_TO_EXECUTE
Ex. kubectl exec ca-tools-12345 -c ca-tools -n carrier-net -- ls -a

Vault related debugging

	To access vault

export VAULT_ADDR=
export VAULT_TOKEN=
vault read PATH_IN_VAULT
Ex. vault read secretsv2/crypto/ordererOrganizations/carrier-net/ca/carrier-net-CA.key

	To list all enabled secrets engines with detailed output

vault secrets list -detailed

	To enable an auth method at a given path

vault auth enable -path PATH
Ex. vault auth enable -path authpath

	To delete data on a given path in the key/value secrets engine

vault kv delete PATH
Ex. vault kv delete secretsv2/creds

Helm related debugging

	To list down all helm releases

helm ls

	To delete an existing helm installation

helm uninstall HELM_RELEASE_NAME -n NAMESPACE
Ex. helm uninstall carrier-ca -n carrier-ns

Docker related debugging

	To login to docker registry

docker login --username USERNAME --password PASSWORD URL
Ex. docker login --username abcd --password abcd ghcr.io/hyperledger

	To pull images from docker registry

docker pull IMAGE_NAME:TAG
Ex. docker pull alpineutils:1.0

	To push images to docker registry

docker push IMAGE_NAME:TAG
Ex. docker push alpineutilstest:1.0

	To build an image from Dockerfile

cd FOLDER_TO_DOCKERFILE
docker build -t IMAGE_NAME:TAG -f DOCKERFILE_PATH PATH_TO_BUILD_CONTEXT
Ex. docker build -t alpineutilstest:1.0 -f Dockerfile .

Quorum related debugging

	To login to a quorum node

kubectl exec -it POD_NAME -n POD_NAMESPACE -c quorum -- geth attach "http://localhost:RPC_PORT"
Ex. kubectl exec -it carrier-0 -n carrier-ns -c quorum -- geth attach "http://localhost:8546"

	Get all the paritipants present in the network after logging into the node (for raft consensus based cluster)

raft.cluster

	Get node information (after logging into the node)

admin.nodeInfo

	Get the peers attached to the current node (after loggin into the node)

admin.peers

	Get the account details (after logging into the node)

eth.accounts

	Get retrieves the list of authorized validators at the specified block (for ibft consensus based cluster)

istanbul.getValidators(blockHashOrBlockNumber)

Indy related debugging

	To access indy cli, in any terminal

 indy-cli

	To create a pool

 pool create local-pool gen_txn_file=<path of the genesis file>

	To connect the pool

pool connect <pool name>

	To create a wallet

wallet create <wallet name> <key>

	To open a wallet

wallet open <wallet name> <key>

	To list the wallets

wallet list

	To delete a wallet

wallet delete <wallet name>

	To create a new did

did import <did file>

did new

	To create a pool

pool create <pool name> gen_txn_file=<pool_genesis_path>

	To open a pool

pool connect <pool name>

	To list the pool

pool list

	To execute a transaction on ledger

ledger nym did=<did name> verkey=<key detail> role=<role name>

	To get the transaction details

ledger get-nym did=<did name>

 Frequently Asked Questions

Frequently Asked Questions

1.FAQs for Getting Started

Who are the target users?

In this project, it is assumed that a user would fall into either a category of Operators or Developers. However, this is not saying that technicians such as Solution/Tech Archs who have more expertise in wider areas are not eligible users, e.g. Blockchain or Distributed Ledger Technology (DLT). On the contrary, a user who has proper technical knowledge on those areas will find the usage of Hyperledger Bevel repository mentioned in the tutorial on this website to be more straightforward. For people new to these areas, they might find a deep learning curve before using or even contributing back to this repository. If a user is from a non-tech background, but would still like to find out how Bevel could accelerate set-up of a new production-scale DLT network, the Introduction section is the right start point.

(1) Operators:
An operator is a System Operator that would work as a Deployment Manager, who has strong technical knowledge on cloud architecture and DevOps but basic DLT. An operator might be a decision maker in a new DLT/Blockchain project, and would be responsible for the ongoing stability of the organization’s resources and services as well as set-up and maintenance of one or more applications for the organization.

A common scenario that an operator would like to leverage Hyperledger Bevel repository might be that s/he has been asked to use a DLT/Blockchain technology for a business case, but s/he does not know where/how to start. S/he might have limited budget, and might not have all the technical skills in the team and was overwhelmed by the time it would take for the solution to be created.

Unique values in scenarios like this provisioned by Hyperledger Bevel repository are: (a) efficiency and rapid deployment (b) consistent quality (c) open-source (d) cloud infrastructure independence (e) optimization via scalability, modularity and security and (f) accelerated go-to-market.

Essentially, an operator would be able to set up a large-size DLT/Blockchain network in a production environment by using this repository as per the tutorials in this website along with the instructions in the readme files in the repository. The network requirements such as which DLT/Blockchain platform (e.g. Fabric/Corda) and which cloud platform (e.g. AWS/GCP/Azure/DigitalOcean etc) would be used should have been pre-determined already before using this repository. The operator would ensure that Hyperledger Bevel repo is set up and deployed properly. Eventually, Bevel would speed up the whole DLT/Blockchain network set-up process and would require less DLT/Blockchain developers enabling the operator to retain the budgets and man-power for other activities.

(2) Developers:
A developer can be a DevOps or Full Stack Developer who would have knowledge on multiple programming languages, basic knowledge of DLT/Blockchain networks and smart contracts, Ansible and DevOps. Daily work might include developing applications and using DevOps tools.

A common scenario that a developer would like to use this repo might be that s/he would like to gain knowledge on production-scale DLT/Blockchain development, but might not have enough technical skills and experiences yet. Learing knowledge from the existing poorly-designed architecture would be time-consuming and fruitless.

Hyperledger Bevel provisions its unique values to the developer that s/he now has an opportunity to learn how different sets of cutting-edge technologies leveraged in this repository are combined in use such as reusable architecture patterns, reusable assets including APIs or microservices design. The architecture design in this repository has been fully tested and demonstrated as a high-quality one known for a fact that it has been being improved continously through the technical experts’ rich experiences. The developer could try to use this repository to set up a small-size DLT/Blockchain network to see how it works and gradually pick up new skills across Blockchain, DevOps, etc.

Furthermore, the developer could even show the maturity of skills to contribute back to this project. Contributions can include but not limited to (1) suggest or add new functionalities (2) fix various bugs and (3) organize hackthon or developer events for Hyperledger Bevel in the future.

What is Hyperledger Bevel and how could it help me?

In simple words, Hyperledger Bevel works as an accelerator to help organizations set up a production-scale DLT network (currently supports Corda, Fabric, Indy, Besu and Quorum) with a single network.yaml file used for Fabric or Corda or Quorum to be configured in this project. It can work in managed Kubernetes Clusters which has been fully tested in AWS Elastic Kubernetes Services (EKS), and should also work in a non-managed Kubernetes Cluster in theory. For detailed information, please see the Welcome page.

How do I find more about Hyperledger Bevel?

Normally, when a user sees information in this section, it means that s/he has already known the existence of Hyperledger Bevel project, at least this readthedocs website. Basically, this website provisions a high-level background information of how to use Hyperledger Bevel GitHub repository. For detailed step-by-step instructions, one should go to Hyperledger Bevel’s GitHub repository and find the readme files for a further reading. Upon finishing reading the tutorials in this website, one should be able to analyse whether Hyperledger Bevel would be the right solution in your case and reach a decision to use it or not.

How much would Hyperledger Bevel cost? How much would it cost to run Hyperledger Bevel on a cloud platform?

As an open source repository, there will be no cost at all to use Hyperledger Bevel. However, by running Hyperledger Bevel repository on a cloud platform, there might be cost by using a cloud platform and it will depend on which cloud services you are going to use.

Who can support me during this process and answer my questions?

One could raise questions in the Github repository and Hyperledger Bevel maintainers will give their best supports at early stages. Later on, when the open community matures, one would expect to get support from people in the community as well.

Is there any training provided? If so, what kind of training will be included?

Unfortunately, there are no existing training for using Hyperledger Bevel yet, because we are not sure about the potential size of the community and what types of training people would look forward to. However, we do aware that trainings could happen, if there would be a large number of same or similar questions or issues raised by new users, and if we would have a large amount of requests like this in the future.

Can I add/remove one or more organisations as DLT nodes in a running DLT/Blockchain network by using Hyperledger Bevel?

Yes, you can add additional nodes to a running DLT/Blockchain network using Hyperledger Bevel . Unfortunately, Bevel does not support removing nodes in a running DLT/Blockchain network, but this significant feature is in our future roadmap, and we will add this feature in a future release.

Does Hyperledger Bevel support multiple versions of Fabric and Corda? What are the minimum versions for Fabric and Corda supported in Hyperledger Bevel?

Hyperledger Bevel currently only supports version 1.4.8 & 2.2.2 for Fabric and version 4.1 and 4.4 for Corda as minimum versions, and will only support future higher versions for Fabric and Corda. Corda Enterprise 4.7 is available as per latest release. Please check the latest releases [https://github.com/hyperledger/bevel/releases] for version upgrades and deprecations.

2.FAQs for Operators Guide

What is the minimal infrastructure set-up required to run Hyperledger Bevel?

To run Hyperledger Bevel repository, you need to have a managed/non-managed Kubernetes clusters ready as well as an unsealed Hashicorp Vault service available.

What would be the recommended/required cloud service?

We recommand to use Cloud Services such as Aamzon Web Services (AWS), Microsoft Azure, Google Cloud Platform (GCP) and DigitalOcean (DO) as their managed Kubernetes clusters services are being or will be tested for this repository. We have fully tested this repository in AWS, and testing it on Azure, GCP, DO is in our future roadmap.

Do I have to use AWS?

No, AWS is not mandatory, but is recommended because it is the first cloud platform we have tested on. Theoretically, Hyperledger Bevel repository should work in any cloud platforms as long as a Kubernetes Cluster service is provisioned, but there is no 100% guarantee it will work, since there might be unseen/unknown features in these managed Kubernetes clusters environments we are not aware of.

Are there any pre-requisites to run Hyperledger Bevel?

Yes, you can find them on this page.

How to configure HashiCorp Vault and Kubernetes?

Please see this page for details.

I’m using Windows machine, can I run Hyperledger Bevel on it?

Hyperledger Bevel repository relies a lot on using Ansible, which might not work in Windows machines. Please check Ansible website for more information.

How do I configure a DLT/Blockchain network?

The network.yaml file is the main file to be configured to set up a DLT/Blockchain network. This page gives the links for a user to pick up knowledge of how to configure this file for Fabric and Corda first (see the two “Configuration file specification” sections for each DLT/Blockchain platform). Having this knowledge will then enable a user to understand how to use this file in the “Setting up DLT network” section.

How can I test whether my DLT/Blockchain network are configured and deployed correctly?

Please see this page for detials.

How/Where can I request for new features, bugs and get feedback?

One could request a new feature on the Github repository for now. In the future, people might use Jira or Slack to do the same as well.

Are CI/CD pipeline tools a mandatory to use Hyperledger Bevel?

No, CI/CD pipeline tools like Jenkins are not mandatory, but it could help a user automate the set-up or testing of a new DLT/Blockchain network in different environments, once a user has a good understanding of using it. We have the main Jenkinsfile in automation folder which can be taken as a template.

Is it required to run Ansible in a particular machine like AWS EC2?

No, a user should be able to run the Ansible command on any machine as long as Ansible command CLI is installed.

Is there an example ansible_hosts file?

Yes, you can find an example ansible_hosts file here [https://github.com/hyperledger/bevel/tree/main/platforms/shared/inventory/ansible_provisioners]. The configuration in this file means that all Ansible commands will be run in the same machine that works as both an Ansible client and server machine.

Can I specify the tools versions such as kubectl, helm in this project?

Yes, you can specify tools versions like kubectl, helm, HashiCorp Vault, AWS-authenticator in the playbook environment-setup.yaml [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/environment-setup.yaml].

How would system react if we plan to update tools versions (e.g. kubectl, helm)?

Honestly speaking, we don’t know. The latest version Hyperledger Bevel has been tested on specific client versions of these tools, see below:
(1) Kubectl: v1.14.2 for Kubernetes 1.14, v1.16.13 for Kubernetes 1.16, v1.19.8 for Kubernetes 1.19
(2) Helm: v3.6.2
(3) HashiCorp Vault: v1.7.1
(4) AWS-Authenticator: v1.10.3

It is assumed that newer versions of these tools would be backward compatible, which is beyond our control. One can raise a new ticket to Hyperledger Bevel GitHub repository, if any major updates would break the system down.

Why does the Flux K8s pod get a permission denied for this Hyperledger Bevel GitHub repository?

This usually means that the private key that you have used in your network.yaml for gitops does not have access to the GitHub repository. The corresponding public key must be added to your GitHub Account (or other git repository that you are using). Details can be found here [https://github.com/hyperledger/bevel/tree/main/platforms/shared/configuration/].

Why does the flux-helm-operator keep on reporting “Failed to list *v1beta1.HelmRelease: the server could not find the requested resource (get helmreleases.flux.weave.works)”?

The HelmRelease CustomResourceDefinition (CRD) was missing from the cluster, according to https://github.com/fluxcd/flux, the following command has to be used to deploy it:

kubectl apply -f https://raw.githubusercontent.com/fluxcd/flux/helm-0.10.1/deploy-helm/flux-helm-release-crd.yaml

3.FAQs for Developer Guide

How do I contribute to this project?

	Guide on Bevel contribution

	Details on creating pull request on github can be found in this link. [https://help.github.com/en/articles/about-pull-requests]

Where can I find Hyperledger Bevel’s coding standards?

TBD

How can I engage in Hyperledger Bevel community for any events?

Connect us on Rocket Chat [https://chat.hyperledger.org/channel/bevel]

 Glossary

Glossary

General

This sections lists the general terms that are used in Hyperledger Bevel.

Ansible

Ansible is an open-source software provisioning, configuration management, and application-deployment tool. It runs on many Unix-like systems, and can configure both Unix-like systems as well as Microsoft Windows. It includes its own declarative language to describe system configuration.
For more details, refer: Ansible [https://docs.ansible.com/]

AWS

Amazon Web Services is a subsidiary of Amazon that provides on-demand cloud computing platforms to individuals, companies, and governments, on a metered pay-as-you-go basis.
For more details, refer: AWS [https://aws.amazon.com/]

AWS EKS

Amazon Elastic Container Service for Kubernetes (Amazon EKS) is a managed service that makes it easy for users to run Kubernetes on AWS without needing to stand up or maintain your own Kubernetes control plane. Since Amazon EKS is a managed service it handles tasks such as provisioning, upgrades, and patching.
For more details, refer: EKS [https://aws.amazon.com/eks/]

Blockchain as a Service (BaaS)

Blockchain-as-a-Service platform is a full-service cloud-based solution that enables developers, entrepreneurs, and enterprises to develop, test, and deploy blockchain applications and smart contracts that will be hosted on the BaaS platform.

Charts

Helm uses a packaging format called charts. A chart is a collection of files that describe a related set of Kubernetes resources. A single chart might be used to deploy something simple, like a memcached pod, or something complex, like a full web app stack with HTTP servers, databases, caches, and so on.
For more details, refer: Helm Charts [https://helm.sh/docs/developing_charts/]

CI/CD

CI and CD are two acronyms that are often mentioned when people talk about modern development practices. CI is straightforward and stands for continuous integration, a practice that focuses on making preparing a release easier. But CD can either mean continuous delivery or continuous deployment, and while those two practices have a lot in common, they also have a significant difference that can have critical consequences for a business.

CLI

A command-line interface (CLI) is a means of interacting with a computer program where the user (or client) issues commands to the program in the form of successive lines of text (command lines).

Cluster

In Kubernetes, a cluster consists of at least one cluster Main node and multiple worker machines called nodes.
For more details, refer: Cluster [https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture]

Deployment

Software deployment is all of the activities that make a software system available for use. The general deployment process consists of several interrelated activities with possible transitions between them. These activities can occur at the producer side or at the consumer side or both.

DLT

Distributed Ledger Technology (DLT) is a digital system for recording the transaction of assets in which the transactions and their details are recorded in multiple places at the same time. Unlike traditional databases, distributed ledgers have no central data store or administration functionality.
For more details, refer: DLT [https://en.wikipedia.org/wiki/Distributed_ledger]

Docker

Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers. Containers are isolated from one another and bundle their own software, libraries and configuration files; they can communicate with each other through well-defined channels.
For more details, refer: Docker [https://www.docker.com/]

Flux

Flux is the operator that makes GitOps happen in a cluster. It ensures that the cluster config matches the one in git and automates your deployments. Flux enables continuous delivery of container images, using version control for each step to ensure deployment is reproducible, auditable and revertible. Deploy code as fast as your team creates it, confident that you can easily revert if required.
For more details, refer: Flux [https://www.weave.works/oss/flux/]

Git

Git is a distributed version-control system for tracking changes in source code during software development. It is designed for coordinating work among programmers, but it can be used to track changes in any set of files. Its goals include speed, data integrity, and support for distributed, non-linear workflows
For more details, refer: GIT [https://git-scm.com/]

Gitops

GitOps is a method used for Continuous Delivery. It uses Git as a single source of truth for infrastructures like declarative infrastructure and the applications.
For more details, refer: Gitops [https://www.weave.works/technologies/gitops/]

HashiCorp Vault

HashiCorp Vault is a tool for securely accessing secrets. A secret is anything that you want to tightly control access to, such as API keys, passwords, or certificates. Vault provides a unified interface to any secret, while providing tight access control and recording a detailed audit log. For more details, refer: Vault [https://www.vaultproject.io/docs/what-is-vault/index.html]

HashiCorp Vault Client

A Vault client is any stand-alone application or integrated add-in that connects to the vault server to access files and perform vault operations.

Helm

Helm is the first application package manager running atop Kubernetes. It allows describing the application structure through convenient helm-charts and managing it with simple commands.
For more details, refer: Helm [https://helm.sh/docs/]

Hosts

A Host is either a physical or virtual machine.

IAM user

An AWS Identity and Access Management (IAM) user is an entity that you create in AWS to represent the person or application that uses it to interact with AWS. A user in AWS consists of a name and credentials.
For more details, refer: IAM Users [https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html]

IOT

The Internet of Things is simply “A network of Internet connected objects able to collect and exchange data.” It is commonly abbreviated as IoT. In a simple way to put it, You have “things” that sense and collect data and send it to the internet.
For more details, refer: IOT [https://en.wikipedia.org/wiki/Internet_of_things]

Instance

A “cloud instance” refers to a virtual server instance from a public or private cloud network. In cloud instance computing, single hardware is implemented into software and run on top of multiple computers.

Jenkins

Jenkins is a free and open source automation server written in Java. Jenkins helps to automate the non-human part of the software development process, with continuous integration and facilitating technical aspects of continuous delivery.
For more details, refer: Jenkins [https://jenkins.io/]

Jenkins Master

Your main Jenkins server is the master machine called Jenkins Master.
For more details, refer: Jenkins Master [https://wiki.jenkins.io/pages/viewpage.action?pageId=75893612]

Jenkins Slave

A slave is a Java executable that runs on a remote machine.
For more details, refer: Jenkins Slave [https://wiki.jenkins.io/pages/viewpage.action?pageId=75893612]

Jenkins Stages

A stage block in Jenkins defines a conceptually distinct subset of tasks performed through the entire Pipeline (e.g. “Build”, “Test” and “Deploy” stages), which is used by many plugins to visualize or present Jenkins Pipeline status/progress.

Kubeconfig File

A kubeconfig file is a file used to configure access to Kubernetes when used in conjunction with the kubectl command line tool (or other clients). This is usually referred to an environment variable called KUBECONFIG.

Kubernetes

Kubernetes (K8s) is an open-source container-orchestration system for automating application deployment, scaling, and management. It was originally designed by Google, and is now maintained by the Cloud Native Computing Foundation.
For more details, refer: Kubernetes [https://kubernetes.io/]

Kubernetes Node

A node is a worker machine in Kubernetes, previously known as a minion. A node may be a VM or physical machine, depending on the cluster. Each node contains the services necessary to run pods and is managed by the master components. The services on a node include the container runtime, kubelet and kube-proxy.
For more details, refer: Kubernetes Node [https://kubernetes.io/docs/concepts/architecture/nodes/]

Kubernetes Storage Class

A StorageClass in Kubernetes provides a way for administrators to describe the “classes” of storage they offer. Different classes might map to quality-of-service levels, or to backup policies, or to arbitrary policies determined by the cluster administrators.
For more details, refer: Storage class [https://kubernetes.io/docs/concepts/storage/storage-classes/]

Kubernetes PersistentVolume (PV)

A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned by an administrator or dynamically provisioned using Storage Classes. It is a resource in the cluster just like a node is a cluster resource. PVs are volume plugins like Volumes, but have a lifecycle independent of any individual pod that uses the PV.
For more details, refer: PVC [https://kubernetes.io/docs/concepts/storage/persistent-volumes/]

Kubernetes Persistent Volume Claim (PVC)

A PVC, binds a persistent volume to a pod that requested it. When a pod wants access to a persistent disk, it will request access to the claim which will specify the size , access mode and/or storage classes that it will need from a Persistent Volume.
For more details, refer: PVC [https://kubernetes.io/docs/concepts/storage/persistent-volumes/]

PGP signature

Pretty Good Privacy (PGP) is an encryption program that provides cryptographic privacy and authentication for data communication. PGP is used for signing, encrypting, and decrypting texts, e-mails, files, directories, and whole disk partitions.
For more details, refer: PGP [https://en.wikipedia.org/wiki/Pretty_Good_Privacy]

Playbook

An Ansible playbook is an organized unit of scripts that defines work for a server configuration managed by the automation tool Ansible.
For more details, refer: Playbooks [https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html]

Pipeline

Jenkins Pipeline (or simply “Pipeline”) is a suite of plugins which supports implementing and integrating continuous delivery pipelines into Jenkins. A continuous delivery pipeline is an automated expression of your process for getting software from version control right through to your users and customers.
For more details, refer: Pipeline [https://jenkins.io/doc/book/pipeline/]

Roles

Roles provide a framework for fully independent, or interdependent collections of variables, tasks, files, templates, and modules. In Ansible, the role is the primary mechanism for breaking a playbook into multiple files. This simplifies writing complex playbooks, and it makes them easier to reuse.
For more details, refer: Roles [https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html]

SCM

Supply Chain Management (SCM) is the broad range of activities required to plan, control and execute a product’s flow, from acquiring raw materials and production through distribution to the final customer, in the most streamlined and cost-effective way possible.

SHA256

SHA-256 stands for Secure Hash Algorithm – 256 bit and is a type of hash function commonly used in Blockchain. A hash function is a type of mathematical function which turns data into a fingerprint of that data called a hash. It’s like a formula or algorithm which takes the input data and turns it into an output of a fixed length, which represents the fingerprint of the data.
For more details, refer: SHA256 [https://en.bitcoinwiki.org/wiki/SHA-256]

Sphinx

Sphinx is a tool that makes it easy to create intelligent and beautiful documentation, written by Georg Brandl and licensed under the BSD license. It was originally created for the Python documentation, and it has excellent facilities for the documentation of software projects in a range of languages.
For more details, refer: Sphinx [http://www.sphinx-doc.org/en/master/]

SSH

SSH, also known as Secure Shell or Secure Socket Shell, is a network protocol that gives users, particularly system administrators, a secure way to access a computer over an unsecured network. SSH also refers to the suite of utilities that implement the SSH protocol.
For more details, refer: SSH [https://en.wikipedia.org/wiki/Secure_Shell]

Template

	Ansible: A template in Ansible is a file which contains all your configuration parameters, but the dynamic values are given as variables. During the playbook execution, depending on the conditions like which cluster you are using, the variables will be replaced with the relevant values.
For more details, refer: Ansible Template [https://docs.ansible.com/ansible/latest/modules/template_module.html]

	Helm Charts: In Helm Charts, Templates generate manifest files, which are YAML-formatted resource descriptions that Kubernetes can understand.
For more details, refer: Helm Charts Template [https://helm.sh/docs/chart_template_guide/]

TLS

Transport Layer Security, and its now-deprecated predecessor, Secure Sockets Layer, are cryptographic protocols designed to provide communications security over a computer network.
For more details, refer: TLS [https://en.wikipedia.org/wiki/Transport_Layer_Security]

YAML

YAML (”YAML Ain’t Markup Language”) is a human-readable data-serialization language. It is commonly used for configuration files and in applications where data is being stored or transmitted. YAML targets many of the same communications applications as Extensible Markup Language but has a minimal syntax which intentionally differs from SGML.
For more details, refer: YAML [https://en.wikipedia.org/wiki/YAML]

Hyperledger-Fabric

This section lists specific terms used in Hyperledger Fabric

CA

The Hyperledger Fabric CA is a Certificate Authority (CA) for Hyperledger Fabric. It provides features such as: registration of identities, or connects to LDAP as the user registry.
For more details, refer: CA [https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/]

CA Server

Fabric CA server is used to host one or more Certification Authorities (Fabric CA) for your Fabric Network (based on the MSPs)

Chaincode

Chaincode is a piece of code that is written in one of the supported languages such as Go or Java. It is installed and instantiated through an SDK or CLI onto a network of Hyperledger Fabric peer nodes, enabling interaction with that network’s shared ledger.
For more details, refer: Chaincode [https://hyperledger-fabric.readthedocs.io/en/release-1.4/chaincode.html]

Channel

A Hyperledger Fabric channel is a private “subnet” of communication between two or more specific network members, for the purpose of conducting private and confidential transactions. A channel is defined by members (organizations), anchor peers per member, the shared ledger, chaincode application(s) and the ordering service node(s).
For more details, refer: Channel [https://hyperledger-fabric.readthedocs.io/en/release-1.4/channels.html]

Channel Artifacts

Artifacts in Hyperledger are channel configuration files which are required for the Hyperledger Fabric network. They are generated at the time of network creation.
For more details, refer: Channel Artifacts [https://hyperledger-fabric.readthedocs.io/en/release-1.4/channel_update_tutorial.html]

Instantiate

Instantiating a chaincode means to initialize it with initial values.
For more details, refer: Instantiating Chaincode [https://hyperledger-fabric.readthedocs.io/en/stable/install_instantiate.html]

MSP

Hyperledger Fabric includes a Membership Service Provider (MSP) component to offer an abstraction of all cryptographic mechanisms and protocols behind issuing and validating certificates, and user authentication.
For more details, refer: MSP [https://hyperledger-fabric.readthedocs.io/en/release-1.4/msp.html]

Orderer

Orderer peer is considered as the central communication channel for the Hyperledger Fabric network. Orderer peer/node is responsible for consistent Ledger state across the network. Orderer peer creates the block and delivers that to all the peers
For more details, refer: Orderer [https://hyperledger-fabric.readthedocs.io/en/release-1.4/orderer/ordering_service.html]

Peer

Hyperledger Fabric is a permissioned blockchain network that gets set by the organizations that intend to set up a consortium. The organizations that take part in building the Hyperledger Fabric network are called the “members”. Each member organization in the blockchain network is responsible to set up their peers for participating in the network. All of these peers need are configured with appropriate cryptographic materials like Certificate Authority and other information.
For more details, refer: Peer [https://hyperledger-fabric.readthedocs.io/en/release-1.4/peers/peers.html]

Zkkafka

Kafka is primarily a distributed, horizontally-scalable, fault-tolerant, commit log. A commit log is basically a data structure that only appends. No modification or deletion is possible, which leads to no read/write locks, and the worst case complexity O(1). There can be multiple Kafka nodes in the blockchain network, with their corresponding Zookeeper ensemble.
For more details, refer: zkkafka [https://hyperledger-fabric.readthedocs.io/en/release-1.4/peers/peers.html]

RAFT

RAFT is distributed crash Fault tolerance consensus algorithm which makes sure that in the event of failure, the system should be able to take a decision and process clients request. In technical term Raft is a consensus algorithm for managing a replicated log. Replicated log is a part of Replicated state machine.
For more details, refer: raft [https://hyperledger-fabric.readthedocs.io/en/release-2.0/orderer/ordering_service.html#raft-concepts]

R3 Corda

This section lists specific terms used in R3 Corda.

Compatibility Zone

Every Corda node is part of a “zone” (also sometimes called a Corda network) that is permissioned. Production deployments require a secure certificate authority. We use the term “zone” to refer to a set of technically compatible nodes reachable over a TCP/IP network like the internet. The word “network” is used in Corda but can be ambiguous with the concept of a “business network”, which is usually more like a membership list or subset of nodes in a zone that have agreed to trade with each other. For more details, refer Compatibility Zone [https://docs.corda.net/compatibility-zones.html].

CorDapp

CorDapps (Corda Distributed Applications) are distributed applications that run on the Corda platform. The goal of a CorDapp is to allow nodes to reach agreement on updates to the ledger. They achieve this goal by defining flows that Corda node owners can invoke over RPC.
For more details, refer: CorDapp [https://docs.corda.net/cordapp-overview.html]

Corda Node

A Corda node is a JVM run-time environment with a unique identity on the network that hosts Corda services and CorDapps.For more details, refer Corda Node [https://docs.corda.net/key-concepts-node.html].

Corda Web Server

A simple web server is provided that embeds the Jetty servlet container. The Corda web server is not meant to be used for real, production-quality web apps. Instead it shows one example way of using Corda RPC in web apps to provide a REST API on top of the Corda native RPC mechanism.

Doorman

The Doorman CA is a Certificate Authority R3 Corda. It is used for day-to-day key signing to reduce the risk of the root network CA’s private key being compromised. This is equivalent to an intermediate certificate in the web PKI. For more details, refer Doorman [https://docs.corda.net/releases/M16-RC04/permissioning.html].

NetworkMap

The Network Map Service accepts digitally signed documents describing network routing and identifying information from nodes, based on the participation certificates signed by the Identity Service, and makes this information available to all Corda Network nodes. For more details, refer Networkmap [https://docs.corda.net/network-map.html].

Notary

The Corda design separates correctness consensus from uniqueness consensus, and the latter is provided by one or more Notary Services. The Notary will digitally sign a transaction presented to it, provided no transaction referring to any of the same inputs has been previously signed by the Notary, and the transaction timestamp is within bounds.Business network operators and network participants may choose to enter into legal agreements which rely on the presence of such digital signatures when determining whether a transaction to which they are party, or upon the details of which they otherwise rely, is to be treated as ‘confirmed’ in accordance with the terms of the underlying agreement. For more details, refer Corda Notaries [https://docs.corda.net/key-concepts-notaries.html].

Hyperledger-Indy

This section lists specific terms used in Hyperledger-Indy.

Admin DID

A decentralized identifier for Admin as defined by the DID Data Model and Generic Syntax specification.

Admin Seed

Seed can be any randomly chosen 32 byte value. There is no predefined format for the seed and it used to initializing keys. The seed used for Admin key is called an admin seed.

Agency

A service provider that hosts Cloud Agents and may provision Edge Agents on behalf of a Ledger’s Entities.

Agent

A software program or process used by or acting on behalf of a Ledger’s Entity to interact with other Agents or, via a Ledger’s Client component, directly with the Ledger. Agents are of two types: Edge Agents run at the edge of the network on a local device, while Cloud Agents run remotely on a server or cloud hosting service. Agents typically have access to a Wallet in order to perform cryptographic operations on behalf of the Ledger’s Entity they represent.

Dependent

An Individual who needs to depend on a Guardian to administer the Individual’s Ledger Identities. Under a Trust Framework, all Dependents may have the right to become Independents. Mutually exclusive with Independent.

Developer

An Identity Owner that has legal accountability (in a scenario where there is a Trust Framework) for the functionality of an Agent, or for software that interacts with an Agent or the Ledger, to provide services to a Ledger Entity.

DID

A decentralized identifier as defined by the DID Data Model and Generic Syntax specification. DIDs enable interoperable decentralized self-sovereign identity management. An Identity Record is associated with exactly one DID. A DID is associated with exactly one DDO.

Domain Genesis

Domain genesis is a genesis file used to initialise the network and may populate network with some domain data.

Endorser

Endorser has the required rights to write on a ledger. Endorser submits a transaction on behalf of the original author.

Genesis Record

The first Identity Record written to the Ledger that describes a new Ledger Entity. For a Steward, the Genesis Record must be written by a Trustee. For an Independent Identity Owner, the Genesis Record must be written by a Trust Anchor. For a Dependent Identity Owner, the Genesis Record must be written by a Guardian.

Identity

A set of Identity Records, Claims, and Proofs that describes a Ledger Entity. To protect privacy: a) an Identity Owner may have more than one Ledger Identity, and b) only the Identity Owner and the Relying Party(s) with whom an Identity is shared knows the specific set of Identity Records, Claims, and Proofs that comprise that particular Identity.

Identity Owner

A Ledger Entity who can be held legally accountable. An Identity Owner must be either an Individual or an Organization. Identity owners can also be distinguised as Independent Identity Owner and Dependent Identity Owner based on the writer of the Genesis record, for an Independent Identity Owner the Genesis Record must be written by a Trust Anchor and in case of a Dependent Identity Owner the the Genesis Record must be written by a Guardian.

Identity Record

A transaction on the Ledger that describes a Ledger Entity. Every Identity Record is associated with exactly one DID. The registration of a DID is itself an Identity Record. Identity Records may include Public Keys, Service Endpoints, Claim Definitions, Public Claims, and Proofs. Identity Records are Public Data.

Identity Role

Each identity has a specific role in Indy described by one of four roles in Indy. These roles are Trustee, Steward, Endorser and Netork Monitor.

Issuer Key

The special type of cryptographic key necessary for an Issuer to issue a Claim that supports Zero Knowledge Proofs.

Ledger

The ledger in Indy is Indy-plenum based. Provides a simple, python-based, immutable, ordered log of transactions backed by a merkle tree. For more details, refer Indy-plenum [https://github.com/hyperledger/indy-plenum/]

NYM Transaction

NYM record is created for a specific user, Trust Anchor, Sovrin Stewards or trustee. The transaction can be used for creation of new DIDs, setting and Key Rotation of verification key, setting and changing of roles.

Pairwise-Unique Identifier

A Pseudonym used in the context of only one digital relationship (Connection). See also Pseudonym and Verinym.

Pool Genesis

Pool genesis is a genesis file used to initialise the network and may populate network with some pool data.

Private Claim

A Claim that is sent by the Issuer to the Holder’s Agent to hold (and present to Relying Parties) as Private Data but which can be verified using Public Claims and Public Data. A Private Claim will typically use a Zero Knowledge Proof, however it may also use a Transparent Proof.

Private Data

Data over which an Entity exerts access control. Private Data should not be stored on a Ledger even when encrypted. Mutually exclusive with Public Data.

Private Key

The half of a cryptographic key pair designed to be kept as the Private Data of an Identity Owner. In elliptic curve cryptography, a Private Key is called a signing key.

Prover

The Entity that issues a Zero Knowledge Proof from a Claim. The Prover is also the Holder of the Claim.

Pseudonym

A Blinded Identifier used to maintain privacy in the context on an ongoing digital relationship (Connection).

Steward

An Organization, within a Trust Framework, that operate a Node. A Steward must meet the Steward Qualifications and agree to the Steward Obligations defined in the a Trust Framework. All Stewards are automatically Trust Anchors.

Trust Anchor

An Identity Owner who may serve as a starting point in a Web of Trust. A Trust Anchor has two unique privileges: 1) to add new Identity Owners to a Network, and 2) to issue Trust Anchor Invitations. A Trust Anchor must meet the Trust Anchor Qualifications and agree to the Trust Anchor Obligations defined in a Trust Framework. All Trustees and Stewards are automatically Trust Anchors.

Verinym

A DID authorized to be written to an Indy-powered Ledger by a Trust Anchor so that it is directly or indirectly associated with the Legal Identity of the Identity Owner. Mutually exclusive with Anonym.

Wallet

A software module, and optionally an associated hardware module, for securely storing and accessing Private Keys, Master Secrets, and other sensitive cryptographic key material and optionally other Private Data used by an Entity on Indy. A Wallet may be either an Edge Wallet or a Cloud Wallet. In Indy infrastructure, a Wallet implements the emerging DKMS standards for interoperable decentralized cryptographic key management.

Zero Knowledge Proof

A Proof that uses special cryptography and a Master Secret to permit selective disclosure of information in a set of Claims. A Zero Knowledge Proof proves that some or all of the data in a set of Claims is true without revealing any additional information, including the identity of the Prover. Mutually exclusive with Transparent Proof.

Quorum

This section lists specific terms used in Quorum.

Constellation

Haskell implementation of a general-purpose system for submitting information in a secure way. it is comparable to a network of MTA (Message Transfer Agents) where messages are encrypted with PGP. Contains Node (Private transaction manager) and the Enclave.

Enode

Enode is a url which identifies a node, it is generated using the node keys.

Istanbul Tool

Istanbul tool is istanbul binary compiled from the code repository. The tool is used to generate the configuration files required for setting up the Quorum network with IBFT consensus.

Node Keys

Node keys consist of node private and node public keys. Those keys are required by the binaries provided by Quorum to boot the node and the network.

Private Transactions

Private Transactions are those Transactions whose payload is only visible to the network participants whose public keys are specified in the privateFor parameter of the Transaction . privateFor can take multiple addresses in a comma separated list.

Public Transactions

Public Transactions are those Transactions whose payload is visible to all participants of the same Quorum network. These are created as standard Ethereum Transactions in the usual way.

Quorum Node

Quorum Node is designed to be a lightweight fork of geth in order that it can continue to take advantage of the R&D that is taking place within the ever growing Ethereum community. Quorum Node is running geth, a Go-Etherium client with rpc endpoints. It supports raft and IBFT pluggable consensus and private and permissioned transactions.

State

Quorum supports dual state, Public State(accessible by all nodes within the network) and Private State(only accessible by nodes with the correct permissions). The difference is made through the use of transactions with encrypted (private) and non-encrypted payloads (public). Nodes can determine if a transaction is private by looking at the v value of the signature. Public transactions have a v value of 27 or 28, private transactions have a value of 37 or 38.

Static nodes

Static nodes are nodes we keep reference to even if the node is not alive. So that when the nodes comes alive, then we can connect to it. Hostnames are permitted here, and are resolved once at startup. If a static peer goes offline and its IP address changes, then it is expected that that peer would re-establish the connection in a fully static network, or have discovery enabled.

Tessera

Java implementation of a general-purpose system for submitting information in a secure way. it is comparable to a network of MTA (Message Transfer Agents) where messages are encrypted with PGP. Contains Node (Private transaction manager) and The Enclave.

The Enclave

Distributed Ledger protocols typically leverage cryptographic techniques for transaction authenticity, participant authentication, and historical data preservation (i.e. through a chain of cryptographically hashed data.) In order to achieve a separation of concerns, as well as to provide performance improvements through parallelization of certain crypto-operations, much of the cryptographic work including symmetric key generation and data encryption/decryption is delegated to the Enclave.

Transaction Manager

Quorum’s Transaction Manager is responsible for Transaction privacy. It stores and allows access to encrypted transaction data, exchanges encrypted payloads with other participant’s Transaction Managers but does not have access to any sensitive private keys. It utilizes the Enclave for cryptographic functionality (although the Enclave can optionally be hosted by the Transaction Manager itself.)

 Contributing

Contributing

Thank you for your interest to contribute to Bevel! 🎉

We welcome contributions to Hyperledger Bevel Project in many forms, and
there’s always plenty to do!

First things first, please review the Hyperledger Code of Conduct [https://wiki.hyperledger.org/display/HYP/Hyperledger+Code+of+Conduct] before participating and please follow it in all your interactions with the project.

You can contibute to Bevel, as a user or/and as a developer.

As a user:

Making Feature/Enhancement Proposals [https://github.com/hyperledger/bevel/issues/new?assignees=&labels=enhancement&template=feature_request.md&title=]Reporting bugs [https://github.com/hyperledger/bevel/issues/new?assignees=&labels=bug&template=bug_report.md&title=]

As a developer:

Consider picking up a “help-wanted” [https://github.com/hyperledger/bevel/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22] or “good-first-issue” [https://github.com/hyperledger/bevel/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22] task

If you can commit to full-time/part-time development, then please contact us on our Rocketchat channel [https://chat.hyperledger.org/channel/bevel] to work through logistics!

Please visit the
Developer Guide in the docs to learn how to make contributions to this exciting project.

Pull Request Process :

For source code integrity , Hyperledger Bevel GitHub pull requests are accepted from forked repositories only. There are also quality standards identified and documented here that will be enhanced over time.

	Fork Bevel via Github UI

	Clone the fork to your local machine

	Complete the desired changes and where possible test locally (more detail to come here)

	Commit your changesi) Make sure you sign your commit using git commit -s for more information see here [https://gist.github.com/tkuhrt/10211ae0a26a91a8c030d00344f7d11b]ii) Make sure your commit message follows Conventional Commits syntax [https://www.conventionalcommits.org/en/v1.0.0-beta.4/#specification]; this aids in release notes generation

	Push your changes to your feature branch

	Initiate a pull request from your fork to the base repository (develop branch , unless it is a critical bug, in that case initiate to the main branch)

	Await DCO & linting quality checks (CI to come soon), as well as any feedback from reviewers.

	Work on the feedbacks to revise the PR if there are any comments

	If not, the PR gets approved , delete feature branch post the merge

NOTE: If you are a regular contributor , please make sure to take the latest pull from the develop branch everytime before making any pull request , main branch in case of a critical defect / bug .

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 Maintainers for Hyperledger Bevel

Maintainers for Hyperledger Bevel

This file is the official list of maintainers for Hyperledger Bevel project.
Changes to this list should be submitted by submitting a pull request that changes this file, and requesting reviews on that pull request from all of the current maintainers.
This is the list of maintainers, including their github profiles for direct communications:

	Name
	GitHub Id
	Area of expertise

	Jonathan M Hamilton
	@jonathan-m-hamilton
	Product vision

	Sownak Roy
	@sownak
	Architecture, Product roadmap & development

	Tracy Kuhrt
	@tkuhrt
	Architecture

	Suvajit Sarkar
	@suvajit-sarkar
	Development, Product roadmap

	Arun S M
	@arsulegai
	Architecture, Development

License [bookmark: license]

Hyperledger Bevel source code files are made available under the Apache License, Version 2.0 (Apache-2.0), located in the LICENSE file. Hyperledger Bevel documentation files are made available under the Creative Commons Attribution 4.0 International License (CC-BY-4.0), available at http://creativecommons.org/licenses/by/4.0/.

 Index

Index

 Adding a CENM Management Console in R3 Corda

 [bookmark: adding-new-org-to-existing-network-in-corda]

Adding a CENM Management Console in R3 Corda

	Prerequisites

	Modify configuration file

[bookmark: prerequisites]

Prerequisites

To add CENM management console, Auth service that has been setup with atleast one user (an admin user), Zone service and Gateway services should already be installed and running.

The Helm Chart for Auth service is available here [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/charts/auth].The Helm Chart for Zone service is available here [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/charts/zone].The Helm Chart for Gateway service is available here [https://github.com/hyperledger/bevel/tree/main/platforms/r3-corda-ent/charts/gateway].

NOTE: Addition of a cenm management console has been tested on an existing network which is created by Bevel. Networks created using other methods may be suitable but this has not been tested by Bevel team.

[bookmark: modify_config_file]

Modify Configuration File

Refer this guide for details on editing the configuration file.

The network.yaml file should contain the specific services.auth, services.zone and services.gateway details along with the network service information about the networkmap and doorman service.

For reference, sample network.yaml file looks like below (but always check the latest at platforms/r3-corda/configuration/samples):

network:
 # Network level configuration specifies the attributes required for each organization
 # to join an existing network.
 type: corda
 version: 4.0
 #enabled flag is frontend is enabled for nodes
 frontend: enabled

 #Environment section for Kubernetes setup
 env:
 type: "env_type" # tag for the environment. Important to run multiple flux on single cluster
 proxy: ambassador # value has to be 'ambassador' as 'haproxy' has not been implemented for Corda
 ambassadorPorts: # Any additional Ambassador ports can be given here, this is valid only if proxy='ambassador'
 portRange: # For a range of ports
 from: 15010
 to: 15043
 # ports: 15020,15021 # For specific ports
 retry_count: 20 # Retry count for the checks
 external_dns: enabled # Should be enabled if using external-dns for automatic route configuration

 # Docker registry details where images are stored. This will be used to create k8s secrets
 # Please ensure all required images are built and stored in this registry.
 # Do not check-in docker_password.
 docker:
 url: "docker_url"
 username: "docker_username"
 password: "docker_password"

 # Remote connection information for doorman and networkmap (will be blank or removed for hosting organization)
 network_service:
 - service:
 type: doorman
 uri: https://doorman.test.corda.blockchaincloudpoc.com:8443
 certificate: home_dir/platforms/r3-corda/configuration/build/corda/doorman/tls/ambassador.crt
 - service:
 type: networkmap
 uri: https://networkmap.test.corda.blockchaincloudpoc.com:8443
 certificate: home_dir/platforms/r3-corda/configuration/build/corda/networkmap/tls/ambassador.crt

 # Allows specification of one or many organizations that will be connecting to a network.
 # If an organization is also hosting the root of the network (e.g. doorman, membership service, etc),
 # then these services should be listed in this section as well.
 organizations:
 # Specification for the new organization. Each organization maps to a VPC and a separate k8s cluster
 - organization:
 name: neworg
 country: US
 state: New York
 location: New York
 subject: "O=Neworg,OU=Neworg,L=New York,C=US"
 type: node
 external_url_suffix: test.corda.blockchaincloudpoc.com

 cloud_provider: aws # Options: aws, azure, gcp
 aws:
 access_key: "aws_access_key" # AWS Access key, only used when cloud_provider=aws
 secret_key: "aws_secret_key" # AWS Secret key, only used when cloud_provider=aws

 # Kubernetes cluster deployment variables. The config file path and name has to be provided in case
 # the cluster has already been created.
 k8s:
 region: "cluster_region"
 context: "cluster_context"
 config_file: "cluster_config"

 # Hashicorp Vault server address and root-token. Vault should be unsealed.
 # Do not check-in root_token
 vault:
 url: "vault_addr"
 root_token: "vault_root_token"

 # Git Repo details which will be used by GitOps/Flux.
 # Do not check-in git_password
 gitops:
 git_protocol: "https" # Option for git over https or ssh
 git_url: "gitops_ssh_url" # Gitops https or ssh url for flux value files like "https://github.com/hyperledger/bevel.git"
 branch: "gitops_branch" # Git branch where release is being made
 release_dir: "gitops_release_dir" # Relative Path in the Git repo for flux sync per environment.
 chart_source: "gitops_charts" # Relative Path where the Helm charts are stored in Git repo
 git_repo: "gitops_repo_url" # Gitops git repository URL for git push like "github.com/hyperledger/bevel.git"
 username: "git_username" # Git Service user who has rights to check-in in all branches
 password: "git_password" # Git Server user access token (Optional for ssh; Required for https)
 email: "git_email" # Email to use in git config
 private_key: "path_to_private_key" # Path to private key file which has write-access to the git repo (Optional for https; Required for ssh)

 services:
 zone:
 name: zone
 type: cenm-zone
 ports:
 enm: 25000
 admin: 12345
 auth:
 name: auth
 subject: "CN=Test TLS Auth Service Certificate, OU=HQ, O=HoldCo LLC, L=New York, C=US"
 type: cenm-auth
 port: 8081
 username: admin
 userpwd: p4ssWord
 gateway:
 name: gateway
 subject: "CN=Test TLS Gateway Certificate, OU=HQ, O=HoldCo LLC, L=New York, C=US"
 type: cenm-gateway
 ports:
 servicePort: 8080
 ambassadorPort: 15008

[bookmark: access-console]

Access CENM Management Console

The detailed steps to access the CENM Management console is given here [https://docs.r3.com/en/platform/corda/1.5/cenm/cenm-console.html]

_static/corda-ent-support-services.png
Kuberetes Cluster

enterprise-.
igentitymanager

enterprise-networkmap

)

signer-
signer- logs
etcPVC PVC

<CENM Namespace>

enterprise-aut

enterprise-zone

enterprise-gateway

i 4

)

ae')

)

ae')

auth

auth-etc
PVC PVC

gateway

oateway
“elcPVC

oateviay
-logs
PVC

Kuberetes Cluster
—_— e
<Notary Service Namespace>

_static/corda-kubernetes-node.png
Kubernetes Cluster

<Node Service Namespace>

node-
servicedata

_static/compatibility_matrix.png
Branch/Tag > Develop Main v0.10.0 v0.9.0 v0.8 v0.7

Features/Tools

Hashicorp Vault (Secret Engine Ve 17.4(v2) | 174 (2) | 174 (2) | 1.7.1 (v1) 1.3.4 (v1)

Ambassador 1139 1139 | 1139 1110 0.53.1

Flux 1230 | 1230 | 1230 | 1202 153

Helm 3.62 3.62 3.62 324 324

HAProxy (For Fabric Only) 0125 | 0125 | 0425 | 091 09.1

Kubernetes/EKS 119 119 119 116 116

DLT Platforms.

Corda 05 Node a7 a7 a7 a7 24 24

Corda Enterprise Node a7 a7 a7 a7 45 24

Corda Enterprise Network Manager 15 15 15 15 12 12

Corda Enterprise Firewall Float DMZ |Float DMZ |Float DMZ | Float DMZ | Float DMZ [Float DMZ

cabric 222 222 222 222 222 220
148 148 148 148 148 144

Fabric Kafka Orderer

Fabric Raft Orderer

Quorum Node 2142 2142 250 250

Quorum Tessera 2140 2140 | 0104 | 0104

Quorum Constellation 03.2 032 032 032

Indy 1121 1121 111 111
111.0 1110 | 1110

Besu Node 2111 2111 144

Besu Orion 21.1.0 21.1.0 15

Besu Tessera 2111 2111 - -

_static/corda-ent-node.png
Kubernetes Cluster

Kubenetes Cluster

<Org DMZ Namespace>

corda_image_irewall

<Org Namespace>

Cords image_frewai_|

e em

float
volume
PVC

')

e

)

wee']

Bridge

bridge-
volume PVC

Node

node-
servicedata

nZ-db

node-volume

PVC

_static/corda-support-services.png
Kubernetes Cluster

<Doorman Namespace>

‘Goorman jar

=

Goorman

doorman-
servicedata

- —
mongodb

Kubernetes Cluster

<Network Map Service Namespace>

nms-
servicedata

Kubernetes Cluster

N
mongodb

<Notary Service Namespace>

notary-
servicedata

_static/corda_flowchart.png
DLT Platform =
Corda

Check for doommaninms pods

Running? No Section

Check for notary registration job(s)

Completed? No Section

Check for notary pod

Running? No Section

Check for node registration jobl(s)

e
Mnoces o setion
Ey

Check for node organization pod(s)

Running? No Section

Check if all organizations

are shown in the network map

Table
All pods

No Section
visible? ol

Yes

Eng

_static/comment.png

_static/common_flowchart.png
Start

Check Flux Pods

*No Descrive Fux Pod

Yes

L 2

Check for namespaces, senvice accounts and storage
dasses.

é‘w\m I

Yes

DLT Platiom

_static/comment-bright.png

_static/comment-close.png

_images/hyperledger-bevel-corda-ent.png
Images

v

Configuration

Developers / Operators

To be implemented in future release

cordasns e corda/notary

corde s fieusll | corda/enterprise-p
corda/enterprise-signer Od/enterprise-
corda/enterprise-

Spring boot container

cordafauth corda/zone

corda/gateway
Corda

Muiti cluster network

F Notary setwp
Single cluster network
o CENM setup

Spring Boot Services. ——
s Firewall setup
Node setup Certficates creation

Deploy s2:Dse0
Corda

Clustered node via
RAFT

Single node

Notary services

Network Map.
Identity Manager
Signer
Auth
Zone

Gateway.

Network services

These items use R3 Corda official components

Oracle services

Corda node

Corda Spring Boot Service|

Corda firewall

PostgreSQL
H2

suonanasug

D @ kuberetes

_images/hyperledger-bevel-corda.png
Developers / Operators

To be implemented in future release

v

Configuration

Oracle container

NMS container

Node / Notary

Doorman container Spring boot container

Corda

Multi cluster

network setup el Esiiy

Single cluster
network setup

Network Map
Service setup

Spring Boot Services

setup Doorman setup

Certificates creation

Node setup

Deploy corDapp
Corda

Clustered node via
RAFT

Single node

Notary services

Network Map
Service

Doorman

Network services

These items use R3 Corda official components

Oracle services

Corda Spring Boot
Services

Corda node

PostgreSQL
H2

Mongo DB

Database

suononasu|

) kubernetes

_images/hlf-bevel-color-small.png
I HYPERLEDGER

_images/hyperledger-bevel-besu.png
Certificates creation

<
2
) d&' Crypto Generation
) -
3
D ;.!_, Transaction manager
< setup
Q
()

Developers / Operators

To be implemented in future release

Init Container for Vault

Node setup

Single cluster network
setup

Multi cluster network
setup

Filesystem

PostgreSQL DB

Database Transaction Manager

ethash ibft2

suononasuj

clique
Besu node

Besu

These items use Besu/Pegasys official components

) kubernetes

_images/hyperledger-bevel-overview.png
Configuration Files Deployed Shared Data Network

ERT T e—

FABRIC rum
crda Srda BESU
kubernetes

platform = <choice>

consensui = <choice> Z HBYEE\R/LEEDEER

[my_org_details]

icrosoft
aws 0 AL \

[other_orgs_details]

“A means to consistently deploy production-ready distributed data networks"”

_images/hyperledger-bevel-quorum.png
quorum Init Container for Vault

constellation mysql-server

tessera busybox

Quorum Common

Filesystem Constellation

MySQL DB Tessera

Certificates creation Node setup

Database Transaction Manager

ion

Single cluster network

Crypto Generation setup

> kubernetes

urat
suonondisuj

Transaction manager Multi cluster network Quorum node
setup setup

Quorum

Conf

Developers / Operators

To be implemented in future release These items use Quorum official components

_images/hyperledger-bevel-fabric.png
fabric-ca fabric-peer
fabric-orderer fabric-zookeeper

fabric-kafka fabric-couchdb
Fabric

Images

Single cluster network Create channel
setup artifacts

Multi cluster network

setup Create channel

CA, Discovery &

Membership Certificates creation

v

Configuration

Join channel Install chaincode

Orderer service setup Node setup

Fabric
Developers / Operators

Fabric REST API

Update chaincode

Deploy chaincode

Chaincode

Join channel

Create channel

Channel Mgmt

To be implemented in future release These items use Fabric official components

Certificate
Authority

Discovery
service

Membership
service providers

Peer node

PBFT
RAFT

Kafka
Orderer

suoponssu|

> kubernetes

_images/hyperledger-bevel-indy.png
Developers / Operators

indy-node
indy-cli

indy-key-mgmt
Indy

Genesis generation

ion

Schema management

urat

Credential definition
management

Conf

Public DID management

DID document
management

To be implemented in future release

Init Container for Vault

Node crypto generation

Join Cluster

Node setup

Single cluster network
setup

Multi cluster network
setup

Peer node

Generate genesis Add new node

Generate node

Create schema
crypto

Generate user crypto Update schema

Key Mgmt Cluster Mgmt

Add new DID

Create credential

Add DID document definition

Update DID Update credential
document definition

Org Mgmt
Indy

These items use Indy official components

suononasu|

) kubernetes

_images/hyperledger-fabric-kubernetes-deployment-orderer.png
Kubernetes Cluster

<Orderer Namespace>

fabric-zookeeper

Tabric-kafia Tabric-orderer

zookeeper0

fabric-zookeeper

Zookeeper-1

Kaka-0
—

|

Kaka-1 orderer

fabric-zookeeper

Tabric-kafka

Zookeeper2

Kaka2
———

Tabric-kafka

_static/file.png

_images/hyperledger-fabric-kubernetes-deployment-peers.png
Kubernetes Cluster

<Namespace>

Tabric-peer Tabric-peer Tabric-ca

fabric-couchdb fabric-couchdb

S E ons)
E e ==

ca-server-
dopve.

_static/hyperledger-fabric-kubernetes-deployment-peers.png
Kubernetes Cluster

<Namespace>

Tabric-peer Tabric-peer Tabric-ca

fabric-couchdb fabric-couchdb

S E ons)
E e ==

ca-server-
dopve.

_static/hyperledger-fabric-kubernetes-deployment-orderer.png
Kubernetes Cluster

<Orderer Namespace>

fabric-zookeeper

Tabric-kafia Tabric-orderer

zookeeper0

fabric-zookeeper

Zookeeper-1

Kaka-0
—

|

Kaka-1 orderer

fabric-zookeeper

Tabric-kafka

Zookeeper2

Kaka2
———

Tabric-kafka

_static/indy_flowchart.png
DLT Platiom
=HLindy

Check for Domain Genesis Configap

é—lm

Yes

v

Check for Pool Genesis Confightap.

Created? No

Yes

L 2

Check for Indy Node Pod(s)

k

Running, then

Completed? No

Go for Final Netuwork Validity Check Section

Eng

Table
Section
N1

Table
Section
N2

Table
Section
N4

_static/hyperledger-indy-kubernetes-deployment-peers.png
Kubernetes Cluster

<Organization Namespace>

steward-node-int
i

steward-node

steward-node

‘domain-
transactions-
genesis

pook-
transactions-
genesis

ebs-indy-node-
data

ebs-indy-node-
keys

_static/corda_notary_registration.png
/7 My professor accused me of plagiarism.

/7]
[/— /S IS His words, not mine!
7 -

—- Corda Open Source 4.4 (21e8c4f) —-

Logs can be found in : /base/corda/logs
! ATTENTION: CORDA_VERSION (property or environment variable) cannot be mapped to an existing Corda config property and
! ATTENTION: CORDA_HOME (property or environment variable) cannot be mapped to an existing Corda config property and th

S S

. M
* Registering as a new participant with a Corda network *
. M

S S

Certificate signing request with the following information will be submitted to the Corda certificate signing server.
Legal Name: OU=Notary, O=Notary, L=London, C=GB
Email: admin@company.com

Public Key: EC Public Key
X: 7ae0386e3d0|
Y: e7a45cdObe0|

BEGIN CERTIFICATE REQUEST:

END CERTIFICATE REQUEST-

Submitting certificate signing request to Corda certificate signing server.
Successfully submitted request to Corda certificate signing server, request ID: 207c2084-ebfb-4e42-98d1-4c9alla765el.
Start polling server for certificate signing approval.

Certificate signing request approved, storing private key with the certificate chain.

Private key 'cordaclientca’ and its certificate-chain stored successfully.

Generating SSL certificate for node messaging service.

SSL private key and certificate chain stored in /base/corda/certificates/sslkeystore.jks.

Generating trust store for corda node

Node trust store stored in /base/corda/certificates/truststore.jks.

Successfully registered Corda node with compatibility zone, node identity keys and certificates are stored in '/base/co
Corda node will now terminate.

_static/down.png

_static/down-pressed.png

_static/fabric_flowchart.png
DLT Platiom
HL Fabric

Check for ca-server and ca-tools pod(s)

Running? No

Yes

v

Check for orderer Pod(s).

S

Yes

L 2

Check for Peer Pod(s).

>

Check for Create channei(s) | Join channe job.

Running, then

Completed? No

Yes

Check for Achor Peers update job.

Running. then
Completed?

Yes

L 2

Check for Install Chaincode! Instantiate Chaincode job.

Running, then

Completed? No

Go for Final Netuwork Validity Check Section

Eng

Table
Section
Fl

Table
Section
F2

Table
Section
F4

Table
Section
F5

_images/minikube-config.jpg
- cluster:
certificate-authority: ca.crt
https://192.168.99.16:

name: minikube

current-context: minikube

kind: Config

preferences: {}

users:

- name: minikube

user:

client-certificate: client.crt
client-key: client.key

_images/physical-architecture.png
SECURITY
SERVICES

Ot

TBD by
Application

AUTHORITY (CA)

TBD by Project /
Client

POLICIES /
OPERATIONS

Out of Scope

DEVOPS SERVICES

VERSION MANAGEMENT
@ git

CONFIGURATION MANAGEMENT

ANSIBLE

KUBERNETES DEPLOY / OPERATE

}‘

HELM

‘{

INFRASTRUCTURE AS CODE

TBD by Project / Client

TEST & ARTIFACT MANAGEMENT

@
=
3
=3
@
o

Jenkins

) GitHub

) GitHub ¥ Read the Docs

D Pre-requisites

Copyright © 2019 Accenture. All rights reserved. Accenture Confidential Information

PRESENTATION SERVICES

>
accenture

| RENDERING&INTERACTION ADAPTIVEPRESENTATION CONTENTSOURCING BLOCKGHAIN
o o AUTOMATION

TBD by Application TBD by Application TBD by Application FRAMEWORK
INTEGRATION SERVICES DATA SERVICES

TBD by
Ar<BASSADOR Ly TBD by
& 0 Application Sz Application
DISTRIBUTED DATA PLATFORMS _
Out of Scope
HYPERLEDGER Quorum
8 INDY BESU
INFRASTRUCTURE SERVICES

Out of Scope

rf‘ Amazon EXS

aws) A

Development and Operations architecture Runtime/Execution architecture

_images/indy_flowchart.png
DLT Platiom
=HLindy

Check for Domain Genesis Configap

é—lm

Yes

v

Check for Pool Genesis Confightap.

Created? No

Yes

L 2

Check for Indy Node Pod(s)

k

Running, then

Completed? No

Go for Final Netuwork Validity Check Section

Eng

Table
Section
N1

Table
Section
N2

Table
Section
N4

_images/legends.png
Tested/Active
Work in Progress
Not Tested

No Active Support

Deprecated

_images/quorum_flowchart.png
DLT Platiorm
Quorum

Check for organization pod(s)

B

Yes

Go for Final Network Validty Check Section

Yes

Table
Is check
———> seci
completed 7 No scton

Yes

Eng

_images/vault-init.png
Let's set up the initial set of master keys that you'll
need in case of an emergency

Key Shares.
1

The number of key shares to split the master key into

Key Threshold

1

The number of key shares required to recanstruct the master key.

v Encrypt Output with PGP

 Encrypt Root Token with PGP

_images/quorum-constellation-node.png
Kubernetes Cluster

<Node Namespace>

‘quorum container

Constelation container

[

consmuznoﬁ genesi

data Json

[constenano
node constellatio
crypto nconfig son

quorum
persistent
data

_images/quorum-tessera-node.png
Kubernetes Cluster

<Node Namespace>

‘quorum container

tessera container

mysa-db container

tesseracd) [genes
g son Json

quorum
persistent
data

_images/virtualbox-mountfolder.png
@ Oracle VM VirtualBox Manager

* @ P9

New Settngs Discard Show

Clg default
&

S

unning

©

OBSYBUYODEEN

General
System
Display
Storage
Audio
Network
SeralPors
use

Shared Folders

User Interface

‘Shared Folders

Shared Eolders:

Name Path
¥ Machine Folders

Transient Folder

c/Users \\hcUsers Yes Ful

@ Add Share

Folder ath: |] ockchan automation-ramenork_+
Foder Name:

X

&8 8

ter #4)

_static/corda_networkmap.png
Nodes # -] Notaries Node #

Node Organisational Unit? Organisation Location ¢ Country® Notary ¢

2D4..D22 Notary Notary London GB v

D69.. 0E7 Manufacturer Manufacturer 47 38/8 54/Zurich CH

_static/corda_getpods_example.png
:~% kubectl get pods
NAME

doormanjv-8448F49c99-v67p
mongodb-doormanjv-5d6b45d676-qcTkj
mongodb-networkmapjv-5bbd76c44d-8¥7vq
networkmapjv-6989547bdc—7wnr1
notaryjv-575b6bdbdd-5wzxs

-n supplychainjv-ns

READY
1/1
1/1
1/1
1/1
2/2

STATUS
Running
Running
Running
Running
Running

RESTARTS

HorRO

AGE
146m
146m
144m
144m
133m

_static/corda_nodedb_output.png
i3 kubectl logs manutacturerjvdb-65639bbo4bT-gjd4m -n manutacturerjv-ns
TCP server running at tcp: 11521 (others can connect)
web Console server running at http://| 1 (others can connect)

_static/corda_node_output.png
v Ay what you can buy for a dollar these
(1 TSI TS days is absolute non-cents!
\— /- NSNS

Corda Open Source 4.4 (21e8c4f)

Logs can be found in : /base/corda/logs
| ATTENTION: CORDA_HOME (property or environment variable) cannot be mapped to an existing Corda config property and thus won
t be used as a config override! It won't be passed as a config override! If that was the intention double check the spelling
and ensure there is such config key.

| ATTENTION: CORDA_VERSION (property or environment variable) cannot be mapped to an existing Corda config property and thus
on't be used as a config override! It won't be passed as a config override! If that was the intention double check the spell
ng and ensure there is such config key.

Advertised PP messaging addresses -
E——

RPC connection address 0.0.0.0:10003

RPC admin connection address 0.0.0.0:10005

Loaded O CorDapp(s) :
Node for "Manufacturer” started up and registered in 39.54 sec
Running P2PMessaging loop

_images/hyperledger-indy-kubernetes-deployment-peers.png
Kubernetes Cluster

<Organization Namespace>

steward-node-int
i

steward-node

steward-node

‘domain-
transactions-
genesis

pook-
transactions-
genesis

ebs-indy-node-
data

ebs-indy-node-
keys

_static/NetworkYamlBesu.png
This is a sample configuration file for Hyperledger Besu network which has 4 nodes.
ALL text values are case-sensitive
network:
Network Level configuration specifies the attributes required for each organization
to join an existing network.
type: besu
version: 1.4.4 #this is the version of Besu docker image that will be deployed.

#Environment section for Kubernetes setup

env:
type: “dev” # tag for the environment. Important to run multiple flux on single cluster
proxy: ambassador # value has to be ‘ambassador’ as ‘haproxy’ has not been implemented for Besu

Any additional Ambassador ports can be given below, must be comma-separated without spaces, this is valid only
These ports are enabled per cluster, so if you have multiple clusters you do not need so many ports

This sample uses a single cluster, so we have to open 4 ports for each Node. These ports are again specified f
ambassadorPorts: 15010,15011,15012,15013,15020,15021,15022,15023,15030,15031,15032,15033,15040,15041,15042,15043
retry_count: 20 # Retry count for the checks on Kubernetes cluster

external dns: enabled # Should be enabled if using external-dns for automatic route configuration

Docker registry details where images are stored. This will be used to create k8s secrets

Please ensure all required images are built and stored in this registry.

Do not check-in docker._password.

docker:
url:

ndex. docker.io/hyperledgerlabs”
username: “"docker_username”
password: "docker_password”

Following are the configurations for the common Besu network
config:

Allows specification of one or many organizations that will be connecting to a network.
organizations:

Specification for the 1st organization. Each organization should map to a VPC and a separate kss cluster for prc
- organization:

name: carrier

external url suffix: test.besu.blockchaincloudpoc.com # This is the url suffix that will be added in DNS recor

_static/NetworkYamlCorda1.png
WoONOU R WNR

WWWWwWNNNRNRRR BB BB
VCONGOUOAURDOLNIOWR RO

This is a sample configuration file for SupplyChain App on Single K8s Cluster.

For multiple K8s clusters, there should be multiple configuration files.

network:

| # Network level configuration specifies the attributes required for each organization
to join an existing network.
type: corda
version: 4.0

frontend: enabled #Flag for frontend to enabled for nodes/peers

#Environment section to help run multiple applications on same cluster
env

Docker registry details where images are stored. This will be used to create k8s secrets
Please ensure all required images are built and stored in this registry.

Do not check-in docker_password.

docker: -

Remote connection information for doorman and networkmap (will be blank or removed for hosting organization)
orderers: -

Allows specification of one or many organizations that will be connecting to a network.

If an organization is also hosting the root of the network (e.g. doorman, membership service, etc),
then these services should be listed in this section as well.

organizations: -+

_static/ListOfPods.png
NAMESPACE
default
default
default
default
default
default
default
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
supplychain-ns
supplychain-ns
supplychain-ns
supplychain-ns
supplychain-ns
supplychain-ns
supplychain-ns
supplychain-ns

kubectl get pods --all-namespaces
NAME
ambassador-57756c£686-9s8zn
ambassador-57756c£686-cdjtw
ambassador-57756c£686-sb595
flux-7bd6c79£76-6nlm8
flux-helm-operator-84b98dcch8-vangd
flux-memcached-5c5£957£5£-4wmhk
vault-6dfb6£859c—jxnke
aws-node-9dsph

aws-node-d77v8

aws-node-nklpp
coredns-5£6dccd954-griml
coredns-5£6dccd954-wafva
kube-proxy-42tvE

kube-proxy-76vét

kube-proxy-paciq
tiller-deploy-7b659b7fbd-db554
doorman-5b54fcbdf-svicr
mongodb-doorman-756c5d6898-xt494
mongodb-networkmap-64c8facdcd-52zqj
networkmap-866b9b4c9b-hbdms
notary-6b677879cc-4n798
notary-register-44nwé
notary-registration-6p26n
notarydb-6678649488-2qhd9

READY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
2/2
0/2
0/2
1/1

STATUS
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Completed
Completed
Running

RESTARTS

0000000000000 000O0OOO 0000

AGE
23h
23h
23h
47m
47m
47m
69d
69d
69d
69d
69d
69d
69d
69d
69d
69d
41m
41m
41m
41m
29m
26m
35m
35m

_static/LogsOfPod.png
$ kubectl logs -f doorman-5bsafcbdf-angjt -n supplychain-ns

newdbnm
starting doorman with the following options

cache-timeout -2

db - /opt/doorman/db

doorman - true

hostname - 0.0.0.0

mongo-connection-string - mongodb://doorman: newdbnn@mongodb-doorman: 2717/admin
mongod-database - ms

mongod-location -

network-map-delay - 1s

paran-update-delay - 165

port - 8080

_static/NetworkYamlQuorum.png
This is a sample configuration file for Quorum network which has 4 nodes.
A1l text values are case-sensitive
network:
Network level configuration specifies the attributes required for each organization
to join an existing network.
‘type: quorum
version: 2.1.1 #this is the version of Quorum docker image that will be deployed

#Environment section for Kubernetes setup

env:
type: "env_type” # tag for the environment. Important to run multiple flux on single cluster.
proxy: ambassador # value has to be 'ambassador’ as 'haproxy’ has not been implemented for Quorum

Any additional Ambassador ports can be given below, must be comma-separated without spaces, this is valid only if proxy='ambassador’
These ports are enabled per cluster, so if you have multiple clusters you do not need so many ports

This sample uses a single cluster, so we have to open 4 ports for each Node. These ports are again specified for each organization below
ambassadorPorts: 15610,15611,15012,15013,15020,15021, 15022, 15023, 15030, 1531, 15032, 15033, 15040, 15041, 15042, 15043

retry_count: 26 # Retry count for the checks on Kubernetes cluster

external_dns: enabled # Should be enabled if using external-dns for automatic route configuration

Docker registry details where images are stored. This will be used to create kgs secrets
Please ensure all required images are built and stored in this registry.
Do not check-in docker_password.

docker:
url: "docker_url™
username: "docker_username”

password: "docker_password”

Following are the configurations for the common Quorum network
configs

Allows specification of one or many organizations that will be connecting to a network.
organization:
Specification for the 1st organization. Each organization should map to a VPC and a separate kss cluster for production deployments
- organization:
name: carrier
external_url_suffix: test.quorun.blockchaincloudpoc.com # This is the url suffix that will be added in DNS recordset. Must be different for different clusters

_static/TopLevelClass-Besu.png
env.

ype
proxy
ambassadorPorts
extemal_dns
retry_count

etwork

tyoe
version
name

Gocker

ul
usemame
password

onfig

Consensus
subject
ransaction_manager|
tm_version
genesis

organization

name
tyoe

extemnal_url_sufix
publicips
cloud_provider

s
access ey
secret ey
@
Contert
confi_fle
Vaidator
name
bootnoce
porls™
services
peer
name
subject
geth_passphrase
Vil ports”
ur
oot token
Siops
ai_ssh
branch
release_dir
chart_source
gi_pusn_urt
usemarme
pacsiord
email

privat

_static/NetworkYamlFabric1.png
This is a sample configuration file for Supplychain App on Single K8s Cluster.

For multiple k8s clusters, there should be multiple configuration files.

network:

Network level configuration specifies the attributes required for each organization
to join an existing network.

type: fabric

version: 1.4.0

frontend: enabled

Docker registry details where images are stored. This will be used to create k8s secrets
Please ensure all required images are built and stored in this registry.

Do not check-in =%,

docker: -

env: -

Remote connection information for orderer (will be blank or removed for hosting organization)
orderers:

The channels defined for a network with participating peers in each channel
channels:
- channel: -

Allows specification of one or many organizations that will be connecting to a network.

If an organization is also hosting the root of the network (e.g. doorman, membership service, etc),
then these services should be listed in this section as well.

organizations: -

_static/NetworkYamlIndy.jpg
This is a sample configuration file for hyperledger indy which can reused for a sample indy network of 9 nodes.
It has 3 organizations:

1. organization "authority" with 1 trustee

2. organization "provider" with 1 trustee, 2 stewards and 1 endorser

3. organization "partner" with 1 trustee, 2 stewards and 1 endorser

network:
Network level configuration specifies the attributes required for each organization
to join an existing network.
type: indy
version: 1.9.2

#Environment section for Kubernetes setup

env:
type: “env_type" # tag for the environment. Important to run multiple flux on single cluster
proxy: ambassador # value has to be 'ambassador' as 'haproxy' has not been implemented for Indy
retry_count: 20 # Retry count for the checks

‘ external_dns: disabled # Should be enabled if using external-dns for automatic route configuration

Docker registry details where images are stored. This will be used to create k8s secrets
Please ensure all required images are built and stored in this registry.
Do not check-in docker_password.
docker:
url: "docker_url"
username: "docker_username"
password: '"docker_password"

It's used as the Indy network name (has impact e.g. on paths where the Indy nodes look for crypto files on their local filesystem)
name: baf

Information about pool transaction genesis and domain transactions genesis
genesis:

state: absent

pool: genesis/pool_transactions_genesis

domain: domain/domain_transactions_genesis

Allows specification of one or many organizations that will be connecting to a network.
organizations:
Specification for the 1st organization. Each organization maps to a VPC and a separate k8s cluster

_static/virtualbox-mountfolder.png
@ Oracle VM VirtualBox Manager

* @ P9

New Settngs Discard Show

Clg default
&

S

unning

©

OBSYBUYODEEN

General
System
Display
Storage
Audio
Network
SeralPors
use

Shared Folders

User Interface

‘Shared Folders

Shared Eolders:

Name Path
¥ Machine Folders

Transient Folder

c/Users \\hcUsers Yes Ful

@ Add Share

Folder ath: |] ockchan automation-ramenork_+
Foder Name:

X

&8 8

ter #4)

_static/vault-init.png
Let's set up the initial set of master keys that you'll
need in case of an emergency

Key Shares.
1

The number of key shares to split the master key into

Key Threshold

1

The number of key shares required to recanstruct the master key.

v Encrypt Output with PGP

 Encrypt Root Token with PGP

_static/DockerBuildFolder.png
~ bevel
> circleci
> github,
> automation
~ build

1 gitops
! network.yam!
> docs
> examples
~ platforms
> hyperledger-besu

_static/GetOnePod.png
kubectl get po -n manufacturer-ns
NAME READY STATUS RESTARTS AGE
manufacturer-76fd7db7c5-gsjj7 2/2 Running 0 6déh

_static/ambassador-dns.png
Q Record Set Name X || Any Type ¥ Aliases Only Weighted Only
|< < Displaying 1to24 out of 24 Record Sets » |
@ *.test.corda.blockchaincloudpoc.com. A ALIAS dualstack.a975bdcaad9f311€99aa102933d6c No

*.orglambassador.blockchaincloudpoc.com. A ALIAS dualstack.a72b794b3cfe211e99ff60204829¢1 No

_static/ambassador-service.png
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S

AGE SELECTOR
ambassador LoadBalancer 172.20.242.205 a975bdcaad9f311e99aal02933d6d36c-493130229.cu-west-2.elb.amazonaws.com 8443:32398/TCP, 100103247
CP,10030:31291/TCP 13d service=ambassador
ambassador-admin LoadBalancer — 172.20.70.22 2975450d8d9£311e992a102933d6d36c-631754403 . eu-west-2.elb.amazonaws.com 80:30947/TCP
13d service=ambassador
flux ClusterIP 172.20.213.13 <none> 3030/TCP
gh app=flux, release=flux
flux-memcached ClusterIP 172.20.43.214 <none> 11211/TCP
gh app=flux-memcached, release=flux
kubernetes ClusterIP 172.20.0.1 <none> 443/TCP

81d <none>

_static/TopLevelClass-Quorum.png
o s
e o acoess key
proxy secret ey
ambassadorPorts
extemal_dns
Teiry_count =
netiork ‘context
e docker e
version ur
name. usemame
password
services
config <
Consensus =
subject
transacton_manager| rome.
m_version suec
m_tie yoe
m_frust Vet sen passpirase
im_fodes o pors
stafcnodes F—H oot token
genesis -
Siops
organization st
rand
name
external_url_suffix 1 Efz‘:ese]?‘c'e
cloud_provider char_cource
usemarme
password
email

privat

_static/ajax-loader.gif

_static/besu-validator-node.png
Kubernetes Cluster

<Node Namespace>

besu container

genes:
Json

besu data-
ar

_static/besu-orion-node.png
Kubernetes Cluster

<Node Namespace>

be:

5u container

ori

fon container

]

orion.cont ‘

genesi
Json

orion
leveldb
PVC

besu o
ar

ata-

_static/quorum-constellation-node.png
Kubernetes Cluster

<Node Namespace>

‘quorum container

Constelation container

[

consmuznoﬁ genesi

data Json

[constenano
node constellatio
crypto nconfig son

quorum
persistent
data

_static/quorum_flowchart.png
DLT Platiorm
Quorum

Check for organization pod(s)

B

Yes

Go for Final Network Validty Check Section

Yes

Table
Is check
———> seci
completed 7 No scton

Yes

Eng

_static/quorum-tessera-node.png
Kubernetes Cluster

<Node Namespace>

‘quorum container

tessera container

mysa-db container

tesseracd) [genes
g son Json

quorum
persistent
data

_static/up.png

_static/up-pressed.png

_static/minikube-config.jpg
- cluster:
certificate-authority: ca.crt
https://192.168.99.16:

name: minikube

current-context: minikube

kind: Config

preferences: {}

users:

- name: minikube

user:

client-certificate: client.crt
client-key: client.key

_static/legends.png
Tested/Active
Work in Progress
Not Tested

No Active Support

Deprecated

_static/physical-architecture.png
SECURITY
SERVICES

Ot

TBD by
Application

AUTHORITY (CA)

TBD by Project /
Client

POLICIES /
OPERATIONS

Out of Scope

DEVOPS SERVICES

VERSION MANAGEMENT
@ git

CONFIGURATION MANAGEMENT

ANSIBLE

KUBERNETES DEPLOY / OPERATE

}‘

HELM

‘{

INFRASTRUCTURE AS CODE

TBD by Project / Client

TEST & ARTIFACT MANAGEMENT

@
=
3
=3
@
o

Jenkins

) GitHub

) GitHub ¥ Read the Docs

D Pre-requisites

Copyright © 2019 Accenture. All rights reserved. Accenture Confidential Information

PRESENTATION SERVICES

>
accenture

| RENDERING&INTERACTION ADAPTIVEPRESENTATION CONTENTSOURCING BLOCKGHAIN
o o AUTOMATION

TBD by Application TBD by Application TBD by Application FRAMEWORK
INTEGRATION SERVICES DATA SERVICES

TBD by
Ar<BASSADOR Ly TBD by
& 0 Application Sz Application
DISTRIBUTED DATA PLATFORMS _
Out of Scope
HYPERLEDGER Quorum
8 INDY BESU
INFRASTRUCTURE SERVICES

Out of Scope

rf‘ Amazon EXS

aws) A

Development and Operations architecture Runtime/Execution architecture

_static/minus.png

_static/plus.png

_static/TopLevelClass-Fabric.png
onv

type.
proxy
—H ambassacorPoris
extemal_dns
retry_count.
ok
type.
version docker
frontend url
usemame
passiord Saripat
name
type.
orderer org_status.
type. peers
name ordererAderess
¢ org_name
uri
certfcate
channel aws
Consortum o aucess ey
o channel_name secret_key
orderername
genesis name
@
Tegion
organization e ca
‘name’ config_file name
type. type.
subject ca_data subject
cloud_provider o ports
i oy contiate
state ordarar
location Hame
org_status e
external_url_suffix — service ‘consensus
ports
Vil Gonsensus
ur mame
root_token type
repiicas
ports
Sops
ai_ssh
branch peer
release_dir name
chart_source type
+ git_push_url (gossippeeraddress
usemarme ports
pacsiord chaincode
email

private_key

_static/TopLevelClass-Indy.png
type docker steward
name type
password publiclp
pool config_file endorser
domain name

privat

_static/TopLevelClass-Corda.png
aws

e
o Secess ey
ooy ey
ambasadirpors
el e
Tety. count
network’ ks
egon
type docker context
watbon et
frontend url config_Te
wcermeme
passwora
i
e i
= oot Token
e
an e
certificate name
o e
i et
branch ports
organization release_dir
gnzme chart_source
i poch
type Susamare
subact wemere Sooman
coud provder oo ame
country private_key e
Sate et
locaton ab sumect
external_url_suffix tis
pors
conce —
rame
e
et
ab sumect
s
pors
oy
Tame
e
et

ports

_images/1f3c3-2642.png

_images/1f4aa.png

nav.xhtml

 Table of Contents

 		
 An accelerator for delivering production-ready blockchain solutions

 		
 Introduction

 		
 Hyperledger Bevel Platform

 		
 How is it different from other BaaS?

 		
 What next?

 		
 Release notes

 		
 Key Concepts

 		
 Ansible

 		
 Kubernetes Services

 		
 Container

 		
 Cluster

 		
 Kubernetes

 		
 Managed Kubernetes Services

 		
 Ambassador

 		
 HAProxy Ingress

 		
 Helm

 		
 HashiCorp Vault

 		
 Installation

 		
 Securing RPC Communication with TLS Encryption

 		
 GitOps

 		
 Hyperledger Bevel’s Features

 		
 Multi-Cloud service providers support

 		
 Multi-DLT/Blockchain platforms support

 		
 No dependency on managed K8s services

 		
 One touch/command deployment

 		
 Security through Vault

 		
 Sharing a Network.yaml file without disclosing any confidentiality

 		
 Getting Started

 		
 Install and Configure Prerequisites

 		
 Using Docker container

 		
 Using Own machine

 		
 Install additional Prerequisites

 		
 Update Configuration File

 		
 Deploy the Network

 		
 Operations Guide

 		
 Pre-requisites

 		
 Install Common Pre-requisites

 		
 Additional Prerequisites for own Ansible Controller

 		
 Configure Common Pre-requisites

 		
 Fabric operations

 		
 Configuration file specification: Hyperledger-Fabric

 		
 Upgrading Hyperledger Fabric version

 		
 Adding a new organization in Hyperledger Fabric

 		
 Adding a new Orderer organization in Hyperledger Fabric

 		
 Adding a new channel in Hyperledger Fabric

 		
 Removing an organization in Hyperledger Fabric

 		
 Adding a new peer to existing organization in Hyperledger Fabric

 		
 Adding a new RAFT orderer to existing Orderer organization in Hyperledger Fabric

 		
 Installing and instantiating chaincode in Bevel deployed Hyperledger Fabric Network

 		
 Upgrading chaincode in Hyperledger Fabric

 		
 Deploying Fabric Operations Console

 		
 Corda operations

 		
 Configuration file specification: R3 Corda

 		
 Adding cordapps to R3 Corda network

 		
 Adding a new organization in R3 Corda

 		
 Adding a new Notary organization in R3 Corda Enterprise

 		
 Besu operations

 		
 Configuration file specification: Hyperledger Besu

 		
 Adding a new member organization in Besu

 		
 Adding a new validator node in Besu

 		
 Adding a new validator organization in Besu

 		
 Indy operations

 		
 Configuration file specification: Indy

 		
 Adding a new validator organization in Indy

 		
 Quorum operations

 		
 Configuration file specification: Quorum

 		
 Adding a new node in Quorum

 		
 Generic operations

 		
 Setting up a DLT/Blockchain network

 		
 How to debug a Bevel deployment

 		
 Adding a new storageclass

 		
 Upgrading a running helm2 Bevel deployment to helm3

 		
 Developer Guide

 		
 Quickstart Guides

 		
 Developer Prerequisites

 		
 Running Bevel DLT network on Minikube

 		
 DLT Blockchain Network deployment using Docker

 		
 Additional Developer prerequisites

 		
 Sphinx tool

 		
 Molecule

 		
 Ansible Roles and Playbooks

 		
 Common Configurations

 		
 Corda Configurations

 		
 Corda Enterprise Configurations

 		
 Fabric Configurations

 		
 Indy Configurations

 		
 Quorum Configurations

 		
 Hyperledger Besu Configurations

 		
 Helm Charts

 		
 Common Charts

 		
 Corda Charts

 		
 Corda Enterprise Helm Charts

 		
 Hyperledger Fabric Charts

 		
 Indy Charts

 		
 Quorum Charts

 		
 Hyperledger Besu Charts

 		
 Jenkins Automation

 		
 Jenkins Pipeline

 		
 Sample Usage

 		
 Supplychain

 		
 Use case description

 		
 Prerequisites

 		
 Setup Guide

 		
 Deploying the supplychain-app

 		
 Testing/validating the supplychain-app

 		
 Indy RefApp

 		
 Use case description

 		
 Pre-requisites

 		
 Bevel current roadmap

 		
 General

 		
 Platforms

 		
 Application

 		
 Histroic DLT/Blockchain support releases

 		
 Compability Matrix

 		
 Colour Legends

 		
 Compatibility Table

 		
 Architecture Reference

 		
 Security Services

 		
 Policy Management

 		
 Key Management

 		
 Identity and Access Management (IAM)

 		
 Certificate Authority (CA)

 		
 Policies/Operations

 		
 DevOps Services

 		
 Version Management

 		
 Configuration Management

 		
 Kubernetes Deploy/Operate

 		
 Infrastructure as Code

 		
 Build, Test, and Artifact Management

 		
 Delivery Management

 		
 Presentation Services

 		
 Integration Services

 		
 DLT Integration

 		
 Application Integration

 		
 External Integration

 		
 Distributed Data Platforms

 		
 Infrastructure Services

 		
 Cloud Providers

 		
 Container Services

 		
 Backup/Restore

 		
 Other Data Services

 		
 Platform-Specific Reference Guides

 		
 Corda Enterprise Architecture Reference

 		
 Certificate Paths on Vault for Corda Enterprise

 		
 Corda Opensource Architecture Reference

 		
 Certificate Paths on Vault for Corda Network

 		
 Hyperledger Fabric Architecture Reference

 		
 Certificate Paths on Vault for Fabric Network

 		
 Hyperledger Indy Architecture Reference

 		
 Certificate Paths on Vault for Indy Network

 		
 Quorum Architecture Reference

 		
 Certificate Paths on Vault for Quorum Network

 		
 Hyperledger Besu Architecture Reference

 		
 Certificate Paths on Vault for Hyperledger Besu Network

 		
 Commands Reference

 		
 Kubectl related debugging

 		
 Vault related debugging

 		
 Helm related debugging

 		
 Docker related debugging

 		
 Quorum related debugging

 		
 Indy related debugging

 		
 Frequently Asked Questions

 		
 1.FAQs for Getting Started

 		
 Who are the target users?

 		
 What is Hyperledger Bevel and how could it help me?

 		
 How do I find more about Hyperledger Bevel?

 		
 How much would Hyperledger Bevel cost? How much would it cost to run Hyperledger Bevel on a cloud platform?

 		
 Who can support me during this process and answer my questions?

 		
 Is there any training provided? If so, what kind of training will be included?

 		
 Can I add/remove one or more organisations as DLT nodes in a running DLT/Blockchain network by using Hyperledger Bevel?

 		
 Does Hyperledger Bevel support multiple versions of Fabric and Corda? What are the minimum versions for Fabric and Corda supported in Hyperledger Bevel?

 		
 2.FAQs for Operators Guide

 		
 What is the minimal infrastructure set-up required to run Hyperledger Bevel?

 		
 What would be the recommended/required cloud service?

 		
 Do I have to use AWS?

 		
 Are there any pre-requisites to run Hyperledger Bevel?

 		
 How to configure HashiCorp Vault and Kubernetes?

 		
 I’m using Windows machine, can I run Hyperledger Bevel on it?

 		
 How do I configure a DLT/Blockchain network?

 		
 How can I test whether my DLT/Blockchain network are configured and deployed correctly?

 		
 How/Where can I request for new features, bugs and get feedback?

 		
 Are CI/CD pipeline tools a mandatory to use Hyperledger Bevel?

 		
 Is it required to run Ansible in a particular machine like AWS EC2?

 		
 Is there an example ansible_hosts file?

 		
 Can I specify the tools versions such as kubectl, helm in this project?

 		
 How would system react if we plan to update tools versions (e.g. kubectl, helm)?

 		
 Why does the Flux K8s pod get a permission denied for this Hyperledger Bevel GitHub repository?

 		
 Why does the flux-helm-operator keep on reporting “Failed to list *v1beta1.HelmRelease: the server could not find the requested resource (get helmreleases.flux.weave.works)”?

 		
 3.FAQs for Developer Guide

 		
 How do I contribute to this project?

 		
 Where can I find Hyperledger Bevel’s coding standards?

 		
 How can I engage in Hyperledger Bevel community for any events?

 		
 Glossary

 		
 General

 		
 Ansible

 		
 AWS

 		
 AWS EKS

 		
 Blockchain as a Service (BaaS)

 		
 Charts

 		
 CI/CD

 		
 CLI

 		
 Cluster

 		
 Deployment

 		
 DLT

 		
 Docker

 		
 Flux

 		
 Git

 		
 Gitops

 		
 HashiCorp Vault

 		
 HashiCorp Vault Client

 		
 Helm

 		
 Hosts

 		
 IAM user

 		
 IOT

 		
 Instance

 		
 Jenkins

 		
 Jenkins Master

 		
 Jenkins Slave

 		
 Jenkins Stages

 		
 Kubeconfig File

 		
 Kubernetes

 		
 Kubernetes Node

 		
 Kubernetes Storage Class

 		
 Kubernetes PersistentVolume (PV)

 		
 Kubernetes Persistent Volume Claim (PVC)

 		
 PGP signature

 		
 Playbook

 		
 Pipeline

 		
 Roles

 		
 SCM

 		
 SHA256

 		
 Sphinx

 		
 SSH

 		
 Template

 		
 TLS

 		
 YAML

 		
 Hyperledger-Fabric

 		
 CA

 		
 CA Server

 		
 Chaincode

 		
 Channel

 		
 Channel Artifacts

 		
 Instantiate

 		
 MSP

 		
 Orderer

 		
 Peer

 		
 Zkkafka

 		
 RAFT

 		
 R3 Corda

 		
 Compatibility Zone

 		
 CorDapp

 		
 Corda Node

 		
 Corda Web Server

 		
 Doorman

 		
 NetworkMap

 		
 Notary

 		
 Hyperledger-Indy

 		
 Admin DID

 		
 Admin Seed

 		
 Agency

 		
 Agent

 		
 Dependent

 		
 Developer

 		
 DID

 		
 Domain Genesis

 		
 Endorser

 		
 Genesis Record

 		
 Identity

 		
 Identity Owner

 		
 Identity Record

 		
 Identity Role

 		
 Issuer Key

 		
 Ledger

 		
 NYM Transaction

 		
 Pairwise-Unique Identifier

 		
 Pool Genesis

 		
 Private Claim

 		
 Private Data

 		
 Private Key

 		
 Prover

 		
 Pseudonym

 		
 Steward

 		
 Trust Anchor

 		
 Verinym

 		
 Wallet

 		
 Zero Knowledge Proof

 		
 Quorum

 		
 Constellation

 		
 Enode

 		
 Istanbul Tool

 		
 Node Keys

 		
 Private Transactions

 		
 Public Transactions

 		
 Quorum Node

 		
 State

 		
 Static nodes

 		
 Tessera

 		
 The Enclave

 		
 Transaction Manager

 		
 Contributing

 		
 As a user:

 		
 As a developer:

 		
 Pull Request Process :

 		
 Maintainers for Hyperledger Bevel

 		
 License

_images/2714.png

_images/DockerBuildFolder.png
~ bevel
> circleci
> github,
> automation
~ build

1 gitops
! network.yam!
> docs
> examples
~ platforms
> hyperledger-besu

_images/1f4cc.png

_images/270b.png

_images/LogsOfPod.png
$ kubectl logs -f doorman-5bsafcbdf-angjt -n supplychain-ns

newdbnm
starting doorman with the following options

cache-timeout -2

db - /opt/doorman/db

doorman - true

hostname - 0.0.0.0

mongo-connection-string - mongodb://doorman: newdbnn@mongodb-doorman: 2717/admin
mongod-database - ms

mongod-location -

network-map-delay - 1s

paran-update-delay - 165

port - 8080

_images/NetworkYamlBesu.png
This is a sample configuration file for Hyperledger Besu network which has 4 nodes.
ALL text values are case-sensitive
network:
Network Level configuration specifies the attributes required for each organization
to join an existing network.
type: besu
version: 1.4.4 #this is the version of Besu docker image that will be deployed.

#Environment section for Kubernetes setup

env:
type: “dev” # tag for the environment. Important to run multiple flux on single cluster
proxy: ambassador # value has to be ‘ambassador’ as ‘haproxy’ has not been implemented for Besu

Any additional Ambassador ports can be given below, must be comma-separated without spaces, this is valid only
These ports are enabled per cluster, so if you have multiple clusters you do not need so many ports

This sample uses a single cluster, so we have to open 4 ports for each Node. These ports are again specified f
ambassadorPorts: 15010,15011,15012,15013,15020,15021,15022,15023,15030,15031,15032,15033,15040,15041,15042,15043
retry_count: 20 # Retry count for the checks on Kubernetes cluster

external dns: enabled # Should be enabled if using external-dns for automatic route configuration

Docker registry details where images are stored. This will be used to create k8s secrets

Please ensure all required images are built and stored in this registry.

Do not check-in docker._password.

docker:
url:

ndex. docker.io/hyperledgerlabs”
username: “"docker_username”
password: "docker_password”

Following are the configurations for the common Besu network
config:

Allows specification of one or many organizations that will be connecting to a network.
organizations:

Specification for the 1st organization. Each organization should map to a VPC and a separate kss cluster for prc
- organization:

name: carrier

external url suffix: test.besu.blockchaincloudpoc.com # This is the url suffix that will be added in DNS recor

_images/GetOnePod.png
kubectl get po -n manufacturer-ns
NAME READY STATUS RESTARTS AGE
manufacturer-76fd7db7c5-gsjj7 2/2 Running 0 6déh

_images/ListOfPods.png
NAMESPACE
default
default
default
default
default
default
default
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
supplychain-ns
supplychain-ns
supplychain-ns
supplychain-ns
supplychain-ns
supplychain-ns
supplychain-ns
supplychain-ns

kubectl get pods --all-namespaces
NAME
ambassador-57756c£686-9s8zn
ambassador-57756c£686-cdjtw
ambassador-57756c£686-sb595
flux-7bd6c79£76-6nlm8
flux-helm-operator-84b98dcch8-vangd
flux-memcached-5c5£957£5£-4wmhk
vault-6dfb6£859c—jxnke
aws-node-9dsph

aws-node-d77v8

aws-node-nklpp
coredns-5£6dccd954-griml
coredns-5£6dccd954-wafva
kube-proxy-42tvE

kube-proxy-76vét

kube-proxy-paciq
tiller-deploy-7b659b7fbd-db554
doorman-5b54fcbdf-svicr
mongodb-doorman-756c5d6898-xt494
mongodb-networkmap-64c8facdcd-52zqj
networkmap-866b9b4c9b-hbdms
notary-6b677879cc-4n798
notary-register-44nwé
notary-registration-6p26n
notarydb-6678649488-2qhd9

READY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
2/2
0/2
0/2
1/1

STATUS
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Completed
Completed
Running

RESTARTS

0000000000000 000O0OOO 0000

AGE
23h
23h
23h
47m
47m
47m
69d
69d
69d
69d
69d
69d
69d
69d
69d
69d
41m
41m
41m
41m
29m
26m
35m
35m

_images/NetworkYamlCorda1.png
WoONOU R WNR

WWWWwWNNNRNRRR BB BB
VCONGOUOAURDOLNIOWR RO

This is a sample configuration file for SupplyChain App on Single K8s Cluster.

For multiple K8s clusters, there should be multiple configuration files.

network:

| # Network level configuration specifies the attributes required for each organization
to join an existing network.
type: corda
version: 4.0

frontend: enabled #Flag for frontend to enabled for nodes/peers

#Environment section to help run multiple applications on same cluster
env

Docker registry details where images are stored. This will be used to create k8s secrets
Please ensure all required images are built and stored in this registry.

Do not check-in docker_password.

docker: -

Remote connection information for doorman and networkmap (will be blank or removed for hosting organization)
orderers: -

Allows specification of one or many organizations that will be connecting to a network.

If an organization is also hosting the root of the network (e.g. doorman, membership service, etc),
then these services should be listed in this section as well.

organizations: -+

_images/NetworkYamlFabric1.png
This is a sample configuration file for Supplychain App on Single K8s Cluster.

For multiple k8s clusters, there should be multiple configuration files.

network:

Network level configuration specifies the attributes required for each organization
to join an existing network.

type: fabric

version: 1.4.0

frontend: enabled

Docker registry details where images are stored. This will be used to create k8s secrets
Please ensure all required images are built and stored in this registry.

Do not check-in =%,

docker: -

env: -

Remote connection information for orderer (will be blank or removed for hosting organization)
orderers:

The channels defined for a network with participating peers in each channel
channels:
- channel: -

Allows specification of one or many organizations that will be connecting to a network.

If an organization is also hosting the root of the network (e.g. doorman, membership service, etc),
then these services should be listed in this section as well.

organizations: -

_images/NetworkYamlIndy.jpg
This is a sample configuration file for hyperledger indy which can reused for a sample indy network of 9 nodes.
It has 3 organizations:

1. organization "authority" with 1 trustee

2. organization "provider" with 1 trustee, 2 stewards and 1 endorser

3. organization "partner" with 1 trustee, 2 stewards and 1 endorser

network:
Network level configuration specifies the attributes required for each organization
to join an existing network.
type: indy
version: 1.9.2

#Environment section for Kubernetes setup

env:
type: “env_type" # tag for the environment. Important to run multiple flux on single cluster
proxy: ambassador # value has to be 'ambassador' as 'haproxy' has not been implemented for Indy
retry_count: 20 # Retry count for the checks

‘ external_dns: disabled # Should be enabled if using external-dns for automatic route configuration

Docker registry details where images are stored. This will be used to create k8s secrets
Please ensure all required images are built and stored in this registry.
Do not check-in docker_password.
docker:
url: "docker_url"
username: "docker_username"
password: '"docker_password"

It's used as the Indy network name (has impact e.g. on paths where the Indy nodes look for crypto files on their local filesystem)
name: baf

Information about pool transaction genesis and domain transactions genesis
genesis:

state: absent

pool: genesis/pool_transactions_genesis

domain: domain/domain_transactions_genesis

Allows specification of one or many organizations that will be connecting to a network.
organizations:
Specification for the 1st organization. Each organization maps to a VPC and a separate k8s cluster

_images/TopLevelClass-Corda.png
aws

e
o Secess ey
ooy ey
ambasadirpors
el e
Tety. count
network’ ks
egon
type docker context
watbon et
frontend url config_Te
wcermeme
passwora
i
e i
= oot Token
e
an e
certificate name
o e
i et
branch ports
organization release_dir
gnzme chart_source
i poch
type Susamare
subact wemere Sooman
coud provder oo ame
country private_key e
Sate et
locaton ab sumect
external_url_suffix tis
pors
conce —
rame
e
et
ab sumect
s
pors
oy
Tame
e
et

ports

_images/TopLevelClass-Fabric.png
onv

type.
proxy
—H ambassacorPoris
extemal_dns
retry_count.
ok
type.
version docker
frontend url
usemame
passiord Saripat
name
type.
orderer org_status.
type. peers
name ordererAderess
¢ org_name
uri
certfcate
channel aws
Consortum o aucess ey
o channel_name secret_key
orderername
genesis name
@
Tegion
organization e ca
‘name’ config_file name
type. type.
subject ca_data subject
cloud_provider o ports
i oy contiate
state ordarar
location Hame
org_status e
external_url_suffix — service ‘consensus
ports
Vil Gonsensus
ur mame
root_token type
repiicas
ports
Sops
ai_ssh
branch peer
release_dir name
chart_source type
+ git_push_url (gossippeeraddress
usemarme ports
pacsiord chaincode
email

private_key

_images/NetworkYamlQuorum.png
This is a sample configuration file for Quorum network which has 4 nodes.
A1l text values are case-sensitive
network:
Network level configuration specifies the attributes required for each organization
to join an existing network.
‘type: quorum
version: 2.1.1 #this is the version of Quorum docker image that will be deployed

#Environment section for Kubernetes setup

env:
type: "env_type” # tag for the environment. Important to run multiple flux on single cluster.
proxy: ambassador # value has to be 'ambassador’ as 'haproxy’ has not been implemented for Quorum

Any additional Ambassador ports can be given below, must be comma-separated without spaces, this is valid only if proxy='ambassador’
These ports are enabled per cluster, so if you have multiple clusters you do not need so many ports

This sample uses a single cluster, so we have to open 4 ports for each Node. These ports are again specified for each organization below
ambassadorPorts: 15610,15611,15012,15013,15020,15021, 15022, 15023, 15030, 1531, 15032, 15033, 15040, 15041, 15042, 15043

retry_count: 26 # Retry count for the checks on Kubernetes cluster

external_dns: enabled # Should be enabled if using external-dns for automatic route configuration

Docker registry details where images are stored. This will be used to create kgs secrets
Please ensure all required images are built and stored in this registry.
Do not check-in docker_password.

docker:
url: "docker_url™
username: "docker_username”

password: "docker_password”

Following are the configurations for the common Quorum network
configs

Allows specification of one or many organizations that will be connecting to a network.
organization:
Specification for the 1st organization. Each organization should map to a VPC and a separate kss cluster for production deployments
- organization:
name: carrier
external_url_suffix: test.quorun.blockchaincloudpoc.com # This is the url suffix that will be added in DNS recordset. Must be different for different clusters

_images/TopLevelClass-Besu.png
env.

ype
proxy
ambassadorPorts
extemal_dns
retry_count

etwork

tyoe
version
name

Gocker

ul
usemame
password

onfig

Consensus
subject
ransaction_manager|
tm_version
genesis

organization

name
tyoe

extemnal_url_sufix
publicips
cloud_provider

s
access ey
secret ey
@
Contert
confi_fle
Vaidator
name
bootnoce
porls™
services
peer
name
subject
geth_passphrase
Vil ports”
ur
oot token
Siops
ai_ssh
branch
release_dir
chart_source
gi_pusn_urt
usemarme
pacsiord
email

privat

_images/ambassador-dns.png
Q Record Set Name X || Any Type ¥ Aliases Only Weighted Only
|< < Displaying 1to24 out of 24 Record Sets » |
@ *.test.corda.blockchaincloudpoc.com. A ALIAS dualstack.a975bdcaad9f311€99aa102933d6c No

*.orglambassador.blockchaincloudpoc.com. A ALIAS dualstack.a72b794b3cfe211e99ff60204829¢1 No

_images/ambassador-service.png
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S

AGE SELECTOR
ambassador LoadBalancer 172.20.242.205 a975bdcaad9f311e99aal02933d6d36c-493130229.cu-west-2.elb.amazonaws.com 8443:32398/TCP, 100103247
CP,10030:31291/TCP 13d service=ambassador
ambassador-admin LoadBalancer — 172.20.70.22 2975450d8d9£311e992a102933d6d36c-631754403 . eu-west-2.elb.amazonaws.com 80:30947/TCP
13d service=ambassador
flux ClusterIP 172.20.213.13 <none> 3030/TCP
gh app=flux, release=flux
flux-memcached ClusterIP 172.20.43.214 <none> 11211/TCP
gh app=flux-memcached, release=flux
kubernetes ClusterIP 172.20.0.1 <none> 443/TCP

81d <none>

_images/TopLevelClass-Indy.png
type docker steward
name type
password publiclp
pool config_file endorser
domain name

privat

_images/TopLevelClass-Quorum.png
o s
e o acoess key
proxy secret ey
ambassadorPorts
extemal_dns
Teiry_count =
netiork ‘context
e docker e
version ur
name. usemame
password
services
config <
Consensus =
subject
transacton_manager| rome.
m_version suec
m_tie yoe
m_frust Vet sen passpirase
im_fodes o pors
stafcnodes F—H oot token
genesis -
Siops
organization st
rand
name
external_url_suffix 1 Efz‘:ese]?‘c'e
cloud_provider char_cource
usemarme
password
email

privat

_images/besu-validator-node.png
Kubernetes Cluster

<Node Namespace>